We consider a three Higgs doublet model with an $S_3$ symmetry in which beside the SM-like doublet there are two fermiophobic doublets. Due to the new charged scalars there is an enhancement in the two-photon decay while the other channels have the same decay widths that the SM neutral Higgs. The fermiophobic scalars are mass degenerated unless soft terms breaking the $S_3$ symmetry are added.
We study $R^2$-Higgs inflation in a model with two Higgs doublets. The context is the general two Higgs doublet model where the Higgs sector of the Standard Model is extended by an additional Higgs doublet. We first discuss the required inflationary dynamics in this two Higgs doublet model, which includes four scalar fields, in the covariant formalism allowing a nonminimal coupling between the Higgs-squared and the Ricci scalar $R$, as well as the $R^2$ term. We find that the parameter space favored by $R^2$-Higgs inflation requires nearly degenerate $m_mathsf{H}$, $m_A$ and $m_{mathsf{H}^pm}$, where $mathsf{H}$, $A$, and $mathsf{H}^pm$ are the extra CP even, CP odd, and charged Higgs bosons in the general two Higgs doublet model taking renormalization group evolutions of the parameters into account. Discovery of such heavy scalars at the Large Hadron Collider are possible if they are in the sub-TeV mass range. Indirect evidences may also emerge at the LHCb and Belle-II experiments, however, to probe the quasi degenerate mass spectra one would likely require future lepton colliders such as the International Linear Collider and the Future Circular Collider.
We discuss the computation of the Higgs boson decay amplitude to two photons through the W-loop using dispersion relations. The imaginary part of the form factor F_W(s) that parametrizes this decay is unambiguous in four dimensions. When it is used to calculate the unsubtracted dispersion integral, the finite result for the form factor F_W(s) is obtained. However, the F_W(s) obtained in this way differs by a constant term from the result of a diagrammatic computation, based on dimensional regularization. It is easy to accommodate the missing constant by writing a once-subtracted dispersion relation for F_W(s) but it is unclear why the subtraction needs to be done. The goal of this paper is to investigate this question in detail. We show that the correct constant can be recovered within a dispersive approach in a number of ways that, however, either require an introduction of an ultraviolet regulator or unphysical degrees of freedom; unregulated and unsubtracted computations in the unitary gauge are insufficient, in spite of the fact that such computations give a finite result.
We use sampling techniques to find robust constraints on the masses of a possible fourth sequential fermion generation from electroweak oblique variables. We find that in the case of a light (115 GeV) Higgs from a single electroweak symmetry breaking doublet, inverted mass hierarchies are possible for both quarks and leptons, but a mass splitting more than M(W) in the quark sector is unlikely. We also find constraints in the case of a heavy (600 GeV) Higgs in a single doublet model. As recent data from the Large Hadron Collider hints at the existence of a resonance at 124.5 GeV and a single Higgs doublet at that mass is inconsistent with a fourth fermion generation, we examine a type II two Higgs doublet model. In this model, there are ranges of parameter space where the Higgs sector can potentially counteract the effects of the fourth generation. Even so, we find that such scenarios produce qualitatively similar fermion mass distributions.
We comment on the recently reiterated claim that the contribution of the W-boson loop to the Higgs boson decay into two photons leads to different expressions in the $R_xi$ gauge and the unitary gauge. By applying a gauge-symmetry preserving regularization with higher-order covariant derivatives we reproduce once again the classical gauge-independent result.
We review the possible role that multi-Higgs models may play in our understanding of the dynamics of a heavy 4th sequential generation of fermions. We describe the underlying ingredients of such models, focusing on two Higgs doublets, and discuss how they may effectively accommodate the low energy phenomenology of such new heavy fermionic degrees of freedom. We also discuss the constraints on these models from precision electroweak data as well as from flavor physics and the implications for collider searches of the Higgs particles and of the 4th generation fermions, bearing in mind the recent observation of a light Higgs with a mass of ~125 GeV.
H. Cardenas
,A. C. B. Machado
,V. Pleitez
.
(2012)
.
"The Higgs decay rate to two photons in a model with two fermiophobic-Higgs doublets"
.
Ana Carolina Bruno Machado Miss
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا