Do you want to publish a course? Click here

Excitation spectra of transition metal atoms on the Ag (100) surface controlled by Hunds exchange

253   0   0.0 ( 0 )
 Added by Tim Oliver Wehling
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report photoemission experiments revealing the valence electron spectral function of Mn, Fe, Co and Ni atoms on the Ag(100) surface. The series of spectra shows splittings of higher energy features which decrease with the filling of the 3d shell and a highly non-monotonous evolution of spectral weight near the Fermi edge. First principles calculations demonstrate that two manifestations of Hunds exchange $J$ are responsible for this evolution. First, there is a monotonous reduction of the effective exchange splittings with increasing filling of the 3d shell. Second, the amount of charge fluctuations and, thus, the weight of quasiparticle peaks at the Fermi level varies non-monotonously through this 3d series due to a distinct occupancy dependence of effective charging energies $U_{rm eff}$.



rate research

Read More

The field-effect-induced modulation of transport properties of 2-dimensional electron gases residing at the LaAlO$_3$/SrTiO$_3$ and LaGaO$_3$/SrTiO$_3$ interfaces has been investigated in a back-gate configuration. Both samples with crystalline and with amorphous overlayers have been considered. We show that the naive standard scenario, in which the back electrode and the 2-dimensional electron gas are simply modeled as capacitor plates, dramatically fails in describing the observed phenomenology. Anomalies appearing after the first low-temperature application of a positive gate bias, and causing a non-volatile perturbation of sample properties, are observed in all our samples. Such anomalies are shown to drive low-carrier density samples to a persistent insulating state. Recovery of the pristine metallic state can be either obtained by a long room-temperature field annealing, or, instantaneously, by a relatively modest dose of visible-range photons. Illumination causes a sudden collapse of the electron system back to the metallic ground state, with a resistivity drop exceeding four orders of magnitude. The data are discussed and interpreted on the base of the analogy with floating-gate MOSFET devices, which sheds a new light on the effects of back-gating on oxide-based 2-dimensional electron gases. A more formal approach, allowing for a semi-quantitative estimate of the relevant surface carrier densities for different samples and under different back-gate voltages, is proposed in the Appendix.
We study the doping-driven Mott metal-insulator transition for multi-orbital Hubbard models with Hunds exchange coupling at finite temperatures. As in the single-orbital Hubbard model, the transition is of first-order within dynamical mean field theory, with a coexistence region where two solutions can be stabilized. We find, that in the presence of finite Hunds coupling, the insulating phase is connected to a badly metallic phase, which extends to surprisingly large dopings. While fractional power-law behavior of the self-energies on the Matsubara axis is found on both sides of the transition, a regime with frozen local moments develops only on the branch connected to the insulating phase.
122 - A. Furrer , A. Podlesnyak , 2015
The extraction of exchange parameters from measured spin-wave dispersion relations has severe limitations particularly for magnetic compounds such as the transition-metal perovskites, where the nearest-neighbor exchange parameter usually dominates the couplings between the further-distant-neighbor spins. Very precise exchange parameters beyond the nearest-neighbor spins can be obtained by neutron spectroscopic investigations of the magnetic excitation spectra of isolated multimers in magnetically diluted compounds. This is exemplified for manganese trimers in the mixed three- and two-dimensional perovskite compounds KMnxZn1-xF3 and K2MnxZn1-xF4, respectively. It is shown that the small exchange couplings between the second-nearest and the third-nearest neighboring spins can be determined unambiguously and with equal precision as the dominating nearest-neighbor exchange coupling.
265 - A. Mugarza , R. Robles , C. Krull 2012
We present a systematic investigation of molecule-metal interactions for transition-metal phthalocyanines (TMPc, with TM = Fe, Co, Ni, Cu) adsorbed on Ag(100). Scanning tunneling spectroscopy and density functional theory provide insight into the charge transfer and hybridization mechanisms of TMPc as a function of increasing occupancy of the 3d metal states. We show that all four TMPc receive approximately one electron from the substrate. Charge transfer occurs from the substrate to the molecules, inducing a charge reorganization in FePc and CoPc, while adding one electron to ligand pi-orbitals in NiPc and CuPc. This has opposite consequences on the molecular magnetic moment: in FePc and CoPc the interaction with the substrate tends to reduce the TM spin, whereas in NiPc and CuPc an additional spin is induced on the aromatic Pc ligand, leaving the TM spin unperturbed. In CuPc, the presence of both TM and ligand spins leads to a triplet ground state arising from intramolecular exchange coupling between d and pi electrons. In FePc and CoPc the magnetic moment of C and N atoms is antiparallel to that of the TM. The different character and symmetry of the frontier orbitals in the TMPc series leads to varying degrees of hybridization and correlation effects, ranging from the mixed-valence (FePc, CoPc) to the Kondo regime (NiPc, CuPc). Coherent coupling between Kondo and inelastic excitations induces finite-bias Kondo resonances involving vibrational transitions in both NiPc and CuPc and triplet-singlet transitions in CuPc.
Magnetic atoms on heavy-element superconducting substrates are potential building blocks for realizing topological superconductivity in one- and two-dimensional atomic arrays. Their localized magnetic moments induce so-called Yu-Shiba-Rusinov (YSR) states inside the energy gap of the substrate. In the dilute limit, where the electronic states of the array atoms are only weakly coupled, proximity of the YSR states to the Fermi energy is essential for the formation of topological superconductivity in the band of YSR states. Here, we reveal via scanning tunnel spectroscopy and ab initio calculations of a series of 3d transition metal atoms (Mn, Fe, Co) adsorbed on the heavy-element superconductor Re that the increase of the Kondo coupling and sign change in magnetic anisotropy with d-state filling is accompanied by a shift of the YSR states through the energy gap of the substrate and a crossing of the Fermi level. The uncovered systematic trends enable the identification of the most promising candidates for the realization of topological superconductivity in arrays of similar systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا