We carry out an exploratory study of the isospin one a0(980) and the isospin one-half kappa scalar mesons using Nf=2+1+1 Wilson twisted mass fermions at one lattice spacing. The valence strange quark is included as an Osterwalder-Seiler fermion with mass tuned so that the kaon mass matches the corresponding mass in the unitary Nf=2+1+1 theory. We investigate the internal structure of these mesons by using a basis of four-quark interpolating fields. We construct diquark-diquark and molecular-typecinterpolating fields and analyse the resulting correlation matrices keeping only connected contributions. For both channels, the low-lying spectrum is found to be consistent with two-particle scattering states. Therefore, our analysis shows no evidence for an additional state that can be interpreted as either a tetraquark or a tightly-bound molecular state.
We investigate the quark content of the scalar meson $a_0(980)$ using lattice QCD. To this end we consider correlation functions of six different two- and four-quark interpolating fields. We evaluate all diagrams, including diagrams, where quarks propagate within a timeslice, e.g. with closed quark loops. We demonstrate that diagrams containing such closed quark loops have a drastic effect on the final results and, thus, may not be neglected. Our analysis shows that in addition to the expected spectrum of two-meson scattering states there is an additional energy level around the two-particle thresholds of $K + bar{K}$ and $eta + pi$. This additional state, which is a candidate for the $a_0(980)$ meson, couples to a quark-antiquark as well as to a diquark-antidiquark interpolating field, indicating that it is a superposition of an ordinary $bar{q} q$ and a tetraquark structure. The analysis is performed using AMIAS, a novel statistical method based on the sampling of all possible spectral decompositions of the considered correlation functions, as well as solving standard generalized eigenvalue problems.
The light scalar mesons a_0/f_0(980) are being investigated at COSY-Juelich by detecting the strong decays into K-K-bar and pi-eta/pi-pi as well as radiative decays into vector mesons. Selected results are discussed with emphasis on recent measurements at the ANKE and WASA spectrometers.
The two-photon decay widths of scalar mesons sigma(600), f_0(980) and a_0(980) are calculated in framework of the local Nambu-Jona-Lasinio model. The contributions of the quark loops (Hartree-Fock approximation) and the meson loops (next 1/N_c-approximation where N_c is the number of colors) are taken into account. These contributions, as we show, are the values of the same order of magnitude. For the f_0 decay the K-loop contribution turns out to play the dominant role. The results are in satisfactory agreement with modern experimental data.
The two-photon decay widths of scalar mesons sigma(600), f_0(980) and a_0(980) as well a_0 -> rho(omega)gamma and f_0 -> rho(omega)gamma are calculated in the framework of the local Nambu-Jona-Lasinio model. The contributions of the quark loops (Hartree-Fock approximation) and the meson loops (next 1/Nc -approximation where Nc is the number of colors) are taken into account. These contributions, as we show, are the values of the same order of magnitude. For the f_0 decay the K-loop contribution turns out to play the dominant role. The results for two-gamma decays are in satisfactory agreement with modern experimental data. The predictions for a_0 -> rho(omega)gamma and f_0 -> rho(omega)gamma widths are given.
We suggest that the recently observed charmed scalar mesons $D_0^{0}(2308)$ (BELLE) and $D_0^{0,+}(2405)$ (FOCUS) are considered as different resonances. Using the QCD sum rule approach we investigate the possible four-quark structure of these mesons and also of the very narrow $D_{sJ}^{+}(2317)$, firstly observed by BABAR. We use diquak-antidiquark currents and work to the order of $m_s$ in full QCD, without relying on $1/m_c$ expansion. Our results indicate that a four-quark structure is acceptable for the resonances observed by BELLE and BABAR: $D_0^{0}(2308)$ and $D_{sJ}^{+}(2317)$ respectively, but not for the resonances observed by FOCUS: $D_0^{0,+}(2405)$.
Constantia Alexandrou
,Jan Oliver Daldrop
,Mattia Dalla Brida
.
(2012)
.
"Lattice investigation of the scalar mesons a_0(980) and kappa using four-quark operators"
.
Carsten Urbach
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا