We investigate the translocation of stiff polymers in the presence of binding particles through a nanopore by two-dimensional Langevin dynamics simulations. We find that the mean translocation time shows a minimum as a function of the binding energy $epsilon$ and the particle concentration $phi$, due to the interplay of the force from binding and the frictional force. Particularly, for the strong binding the translocation proceeds with a decreasing translocation velocity induced by a significant increase of the frictional force. In addition, both $epsilon$ and $phi$ have an notable impact on the distribution of the translocation time. With increasing $epsilon$ and $phi$, it undergoes a transition from an asymmetric and broad distribution under the weak binding to a nearly Gaussian one under the strong binding, and its width becomes gradually narrower.