Do you want to publish a course? Click here

Information Geometry and Sequential Monte Carlo

182   0   0.0 ( 0 )
 Added by Aaron Sim
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

This paper explores the application of methods from information geometry to the sequential Monte Carlo (SMC) sampler. In particular the Riemannian manifold Metropolis-adjusted Langevin algorithm (mMALA) is adapted for the transition kernels in SMC. Similar to its function in Markov chain Monte Carlo methods, the mMALA is a fully adaptable kernel which allows for efficient sampling of high-dimensional and highly correlated parameter spaces. We set up the theoretical framework for its use in SMC with a focus on the application to the problem of sequential Bayesian inference for dynamical systems as modelled by sets of ordinary differential equations. In addition, we argue that defining the sequence of distributions on geodesics optimises the effective sample sizes in the SMC run. We illustrate the application of the methodology by inferring the parameters of simulated Lotka-Volterra and Fitzhugh-Nagumo models. In particular we demonstrate that compared to employing a standard adaptive random walk kernel, the SMC sampler with an information geometric kernel design attains a higher level of statistical robustness in the inferred parameters of the dynamical systems.



rate research

Read More

Sequential Monte Carlo (SMC), also known as particle filters, has been widely accepted as a powerful computational tool for making inference with dynamical systems. A key step in SMC is resampling, which plays the role of steering the algorithm towards the future dynamics. Several strategies have been proposed and used in practice, including multinomial resampling, residual resampling (Liu and Chen 1998), optimal resampling (Fearnhead and Clifford 2003), stratified resampling (Kitagawa 1996), and optimal transport resampling (Reich 2013). We show that, in the one dimensional case, optimal transport resampling is equivalent to stratified resampling on the sorted particles, and they both minimize the resampling variance as well as the expected squared energy distance between the original and resampled empirical distributions; in the multidimensional case, the variance of stratified resampling after sorting particles using Hilbert curve (Gerber et al. 2019) in $mathbb{R}^d$ is $O(m^{-(1+2/d)})$, an improved rate compared to the original $O(m^{-(1+1/d)})$, where $m$ is the number of resampled particles. This improved rate is the lowest for ordered stratified resampling schemes, as conjectured in Gerber et al. (2019). We also present an almost sure bound on the Wasserstein distance between the original and Hilbert-curve-resampled empirical distributions. In light of these theoretical results, we propose the stratified multiple-descendant growth (SMG) algorithm, which allows us to explore the sample space more efficiently compared to the standard i.i.d. multiple-descendant sampling-resampling approach as measured by the Wasserstein metric. Numerical evidence is provided to demonstrate the effectiveness of our proposed method.
We propose a Markov chain Monte Carlo (MCMC) scheme to perform state inference in non-linear non-Gaussian state-space models. Current state-of-the-art methods to address this problem rely on particle MCMC techniques and its variants, such as the iterated conditional Sequential Monte Carlo (cSMC) scheme, which uses a Sequential Monte Carlo (SMC) type proposal within MCMC. A deficiency of standard SMC proposals is that they only use observations up to time $t$ to propose states at time $t$ when an entire observation sequence is available. More sophisticated SMC based on lookahead techniques could be used but they can be difficult to put in practice. We propose here replica cSMC where we build SMC proposals for one replica using information from the entire observation sequence by conditioning on the states of the other replicas. This approach is easily parallelizable and we demonstrate its excellent empirical performance when compared to the standard iterated cSMC scheme at fixed computational complexity.
Monte Carlo methods are widely used for approximating complicated, multidimensional integrals for Bayesian inference. Population Monte Carlo (PMC) is an important class of Monte Carlo methods, which utilizes a population of proposals to generate weighted samples that approximate the target distribution. The generic PMC framework iterates over three steps: samples are simulated from a set of proposals, weights are assigned to such samples to correct for mismatch between the proposal and target distributions, and the proposals are then adapted via resampling from the weighted samples. When the target distribution is expensive to evaluate, the PMC has its computational limitation since the convergence rate is $mathcal{O}(N^{-1/2})$. To address this, we propose in this paper a new Population Quasi-Monte Carlo (PQMC) framework, which integrates Quasi-Monte Carlo ideas within the sampling and adaptation steps of PMC. A key novelty in PQMC is the idea of importance support points resampling, a deterministic method for finding an optimal subsample from the weighted proposal samples. Moreover, within the PQMC framework, we develop an efficient covariance adaptation strategy for multivariate normal proposals. Lastly, a new set of correction weights is introduced for the weighted PMC estimator to improve the efficiency from the standard PMC estimator. We demonstrate the improved empirical convergence of PQMC over PMC in extensive numerical simulations and a friction drilling application.
We propose a modified coupled cluster Monte Carlo algorithm that stochastically samples connected terms within the truncated Baker--Campbell--Hausdorff expansion of the similarity transformed Hamiltonian by construction of coupled cluster diagrams on the fly. Our new approach -- diagCCMC -- allows propagation to be performed using only the connected components of the similarity-transformed Hamiltonian, greatly reducing the memory cost associated with the stochastic solution of the coupled cluster equations. We show that for perfectly local, noninteracting systems, diagCCMC is able to represent the coupled cluster wavefunction with a memory cost that scales linearly with system size. The favorable memory cost is observed with the only assumption of fixed stochastic granularity and is valid for arbitrary levels of coupled cluster theory. Significant reduction in memory cost is also shown to smoothly appear with dissociation of a finite chain of helium atoms. This approach is also shown not to break down in the presence of strong correlation through the example of a stretched nitrogen molecule. Our novel methodology moves the theoretical basis of coupled cluster Monte Carlo closer to deterministic approaches.
The iterated conditional sequential Monte Carlo (i-CSMC) algorithm from Andrieu, Doucet and Holenstein (2010) is an MCMC approach for efficiently sampling from the joint posterior distribution of the $T$ latent states in challenging time-series models, e.g. in non-linear or non-Gaussian state-space models. It is also the main ingredient in particle Gibbs samplers which infer unknown model parameters alongside the latent states. In this work, we first prove that the i-CSMC algorithm suffers from a curse of dimension in the dimension of the states, $D$: it breaks down unless the number of samples (particles), $N$, proposed by the algorithm grows exponentially with $D$. Then, we present a novel local version of the algorithm which proposes particles using Gaussian random-walk moves that are suitably scaled with $D$. We prove that this iterated random-walk conditional sequential Monte Carlo (i-RW-CSMC) algorithm avoids the curse of dimension: for arbitrary $N$, its acceptance rates and expected squared jumping distance converge to non-trivial limits as $D to infty$. If $T = N = 1$, our proposed algorithm reduces to a Metropolis--Hastings or Barkers algorithm with Gaussian random-walk moves and we recover the well known scaling limits for such algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا