Do you want to publish a course? Click here

Cavity-Mediated Entanglement Generation Via Landau-Zener Interferometry

577   0   0.0 ( 0 )
 Added by Jason Petta
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate quantum control and entanglement generation using a Landau-Zener beam splitter formed by coupling two transmon qubits to a superconducting cavity. Single passage through the cavity-mediated qubit-qubit avoided crossing provides a direct test of the Landau-Zener transition formula. Consecutive sweeps result in Landau-Zener-Stuckelberg interference patterns, with a visibility that can be sensitively tuned by adjusting the level velocity through both the non-adiabatic and adiabatic regimes. Two-qubit state tomography indicates that a Bell state can be generated via a single passage, with a fidelity of 78% limited by qubit relaxation.



rate research

Read More

Reading out Majorana bound states (MBSs) is essential both to verify their non-Abelian property and to realize topological quantum computation. Here, we construct a protocol to measure the parity of two MBSs in a Majorana island coupled to double quantum dot (DQD). The parity information is mapped to the charge state of the DQD through Landau-Zener transition. The operation needed is sweeping the bias of the DQD, which is followed by charge sensing. In the case without fine-tuning, a single run of sweep-and-detection implement a weak measurement of the parity. We find that in general a sequence of about ten runs would completely project a superposition state to either parity, and the charge detection in each run records how the state of MBSs collapses step by step. Remarkably, this readout protocol is of non-demolition and robust to low frequency charge fluctuation.
We investigate the Landau-Zener-Stuckelberg-Majorana interferometry of a superconducting qubit in a semi-infinite transmission line terminated by a mirror. The transmon-type qubit is at the node of the resonant electromagnetic (EM) field, hiding from the EM field. Mirror, mirror briefly describes this system, because the qubit acts as another mirror. We modulate the resonant frequency of the qubit by applying a sinusoidal flux pump. We probe the spectroscopy by measuring the reflection coefficient of a weak probe in the system. Remarkable interference patterns emerge in the spectrum, which can be interpreted as multi-photon resonances in the dressed qubit. Our calculations agree well with the experiments.
We perform Landau-Zener-Stuckelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. In analogy to the electron systems, at magnetic field B=0 and high modulation frequencies we observe the photon-assisted tunneling (PAT) between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flipping interdot tunneling channel, introducing a distinct interference pattern at finite B. Magneto-transport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin-conserving and spin-flipping, which form closed loops at critical magnetic fields. In one such loop an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.
We study Landau-Zener transitions between two states with the addition of a shared discretized continuum. The continuum allows for population decay from the initial state as well as indirect transitions between the two states. The probability of nonadiabatic transition in this multichannel model preserves the standard Landau-Zener functional form except for a shift in the usual exponential factor, reflecting population transfer into the continuum. We provide an intuitive explanation for this behavior assuming independent individual transitions between pairs of states. In contrast, the probability of survival in the ground state at long time shows a novel, non-monotonic, functional form, with an oscillatory behavior in the sweep rate at low sweep rate values. We contrast the behavior of this open-multistate model to other generalized Landau-Zener models incorporating an environment: the stochastic Landau-Zener model and the dissipative case, where energy dissipation and thermal excitations affect the adiabatic region. Finally, we present evidence that the continuum of states may act to shield the two-state Landau-Zener transition probability from the effect of noise.
We perform Landau-Zener-Stuckelberg interferometry on a single electron GaAs charge qubit by repeatedly driving the system through an avoided crossing. We observe coherent destruction of tunneling, where periodic driving with specific amplitudes inhibits current flow. We probe the quantum dot occupation using a charge sensor, observing oscillations in the qubit population resulting from the microwave driving. At a frequency of 9 GHz we observe excitation processes driven by the absorption of up to 17 photons. Simulations of the qubit occupancy are in good agreement with the experimental data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا