No Arabic abstract
We present our methods to fit the two point correlators for light, strange, and charmed pseudoscalar meson physics with the highly improved staggered quark (HISQ) action. We make use of the least-squares fit including the full covariance matrix of the correlators and including Gaussian constraints on some parameters. We fit the correlators on a variety of the HISQ ensembles. The lattice spacing ranges from 0.15 fm down to 0.06 fm. The light sea quark mass ranges from 0.2 times the strange quark mass down to the physical light quark mass. The HISQ ensembles also include lattices with different volumes and with unphysical values of the strange quark mass. We use the results from this work to obtain our preliminary results of $f_D$, $f_{D_s}$, $f_{D_s}/f_{D}$, and ratios of quark masses presented in another talk [1].
We report on a scale determination with gradient-flow techniques on the $N_f = 2 + 1 + 1$ HISQ ensembles generated by the MILC collaboration. The lattice scale $w_0/a$, originally proposed by the BMW collaboration, is computed using Symanzik flow at four lattice spacings ranging from 0.15 to 0.06 fm. With a Taylor series ansatz, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We give a preliminary determination of the scale $w_0$ in physical units, along with associated systematic errors, and compare with results from other groups. We also present a first estimate of autocorrelation lengths as a function of flowtime for these ensembles.
We report updates to an ongoing lattice-QCD calculation of the form factors for the semileptonic decays $B to pi ell u$, $B_s to K ell u$, $B to pi ell^+ ell^-$, and $B to K ell^+ ell^-$. The tree-level decays $B_{(s)} to pi (K) ell u$ enable precise determinations of the CKM matrix element $|V_{ub}|$, while the flavor-changing neutral-current interactions $B to pi (K) ell^+ ell^-$ are sensitive to contributions from new physics. This work uses MILCs (2+1+1)-flavor HISQ ensembles at approximate lattice spacings between $0.057$ and $0.15$ fm, with physical sea-quark masses on four out of the seven ensembles. The valence sector is comprised of a clover $b$ quark (in the Fermilab interpretation) and HISQ light and $s$ quarks. We present preliminary results for the form factors $f_0$, $f_+$, and $f_T$, including studies of systematic errors.
We report the status of an ongoing lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$ mesons with both charged currents ($Btopiell u$, $B_sto Kell u$) and neutral currents ($Btopiell^+ell^-$, $Bto Kell^+ell^-$). The results are important for constraining or revealing physics beyond the Standard Model. This work uses MILCs (2+1+1)-flavor ensembles with the HISQ action for the sea and light valence quarks and the clover action in the Fermilab interpretation for the $b$ quark. Simulations are carried out at three lattice spacings down to $0.088$ fm, with both physical and unphysical sea-quark masses. We present preliminary results for correlation-function fits.
We present high statistics ($mathcal{O}(2times 10^5)$ measurements) preliminary results on (i) the isovector charges, $g^{u-d}_{A,S,T}$, and form factors, $G^{u-d}_E(Q^2)$, $G^{u-d}_M(Q^2)$, $G^{u-d}_A(Q^2)$, $widetilde G^{u-d}_P(Q^2)$, $G^{u-d}_P(Q^2)$, on six 2+1-flavor Wilson-clover ensembles generated by the JLab/W&M/LANL/MIT collaboration with lattice parameters given in Table 1. Examples of the impact of using different estimates of the excited state spectra are given for the clover-on-clover data, and as discussed in [1], the biggest difference on including the lower energy (close to $Npi$ and $Npipi$) states is in the axial channel. (ii) Flavor diagonal axial, tensor and scalar charges, $g^{u,d,s}_{A,S,T}$, are calculated with the clover-on-HISQ formulation using nine 2+1+1-flavor HISQ ensembles generated by the MILC collaboration [2] with lattice parameters given in Table 2. Once finished, the calculations of $g^{u,d,s}_{A,T}$ will update the results given in Refs.[3,4]. The estimates for $g^{u,d,s}_{S}$ and $sigma_{Npi}$ are new. Overall, a large part of the focus is on understanding the excited state contamination (ESC), and the results discussed provide a partial status report on developing defensible analyses strategies that include contributions of possible low-lying excited states to individual nucleon matrix elements.
We fit lattice-QCD data for light-pseudoscalar masses and decay constants, from HISQ configurations generated by MILC, to SU(3) staggered chiral perturbation theory. At present such fits have rather high values of chi^2/d.o.f., possibly due to the lack of ensembles with lighter-than-physical sea strange-quark masses. We propose solutions to this problem for future work. We also perform simple linear interpolations near the physical point on two ensembles with different lattice spacings, and obtain the preliminary result (f_K / f_pi)^phys = 1.1872(41) in the continuum limit.