Do you want to publish a course? Click here

Hot X-ray coronae around massive spiral galaxies: a unique probe of structure formation models

109   0   0.0 ( 0 )
 Added by Akos Bogdan
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Luminous X-ray gas coronae in the dark matter halos of massive spiral galaxies are a fundamental prediction of structure formation models, yet only a few such coronae have been detected so far. In this paper, we study the hot X-ray coronae beyond the optical disks of two normal massive spirals, NGC1961 and NGC6753. Based on XMM-Newton X-ray observations, hot gaseous emission is detected to ~60 kpc - well beyond their optical radii. The hot gas has a best-fit temperature of kT~0.6 keV and an abundance of ~0.1 Solar, and exhibits a fairly uniform distribution, suggesting that the quasi-static gas resides in hydrostatic equilibrium in the potential well of the galaxies. The bolometric luminosity of the gas in the (0.05-0.15)r_200 region (r_200 is the virial radius) is ~6e40 erg/s for both galaxies. The baryon mass fractions of NGC1961 and NGC6753 are f_b~0.1, which fall short of the cosmic baryon fraction. The hot coronae around NGC1961 and NGC6753 offer an excellent basis to probe structure formation simulations. To this end, the observations are confronted with the moving mesh code Arepo and the smoothed particle hydrodynamics code Gadget. Although neither model gives a perfect description, the observed luminosities, gas masses, and abundances favor the Arepo code. Moreover, the shape and the normalization of the observed density profiles are better reproduced by Arepo within ~0.5r_200. However, neither model incorporates efficient feedback from supermassive black holes or supernovae, which could alter the simulated properties of the X-ray coronae. With the further advance of numerical models, the present observations will be essential in constraining the feedback effects in structure formation simulations.



rate research

Read More

The presence of luminous hot X-ray coronae in the dark matter halos of massive spiral galaxies is a basic prediction of galaxy formation models. However, observational evidence for such coronae is very scarce, with the first few examples having only been detected recently. In this paper, we study the large-scale diffuse X-ray emission associated with the massive spiral galaxy NGC266. Using ROSAT and Chandra X-ray observations we argue that the diffuse emission extends to at least ~70 kpc, whereas the bulk of the stellar light is confined to within ~25 kpc. Based on X-ray hardness ratios, we find that most of the diffuse emission is released at energies <1.2 keV, which indicates that this emission originates from hot X-ray gas. Adopting a realistic gas temperature and metallicity, we derive that in the (0.05-0.15)r_200 region (where r_200 is the virial radius) the bolometric X-ray luminosity of the hot gas is (4.3 +/- 0.8) x 10^40 erg/s and the gas mass is (9.1 +/- 0.9) x 10^9 M_sun. These values are comparable to those observed for the two other well-studied X-ray coronae in spiral galaxies, suggesting that the physical properties of such coronae are similar. This detection offers an excellent opportunity for comparison of observations with detailed galaxy formation simulations.
The presence of hot gaseous coronae around present-day massive spiral galaxies is a fundamental prediction of galaxy formation models. However, our observational knowledge remains scarce, since to date only four gaseous coronae were detected around spirals with massive stellar bodies ($gtrsim2times10^{11} rm{M_{odot}}$). To explore the hot coronae around lower mass spiral galaxies, we utilized Chandra X-ray observations of a sample of eight normal spiral galaxies with stellar masses of $(0.7-2.0)times10^{11} rm{M_{odot}}$. Although statistically significant diffuse X-ray emission is not detected beyond the optical radii ($sim20$ kpc) of the galaxies, we derive $3sigma$ limits on the characteristics of the coronae. These limits, complemented with previous detections of NGC 1961 and NGC 6753, are used to probe the Illustris Simulation. The observed $3sigma$ upper limits on the X-ray luminosities and gas masses exceed or are at the upper end of the model predictions. For NGC 1961 and NGC 6753 the observed gas temperatures, metal abundances, and electron density profiles broadly agree with those predicted by Illustris. These results hint that the physics modules of Illustris are broadly consistent with the observed properties of hot coronae around spiral galaxies. However, a shortcoming of Illustris is that massive black holes, mostly residing in giant ellipticals, give rise to powerful radio-mode AGN feedback, which results in under luminous coronae for ellipticals.
X-ray emitting gaseous coronae around massive galaxies are a basic prediction of galaxy formation models. Although the coronae around spiral galaxies offer a fundamental test of these models, observational constraints on their characteristics are still scarce. While the presence of extended hot coronae has been established around a handful of massive spiral galaxies, the short X-ray observations only allowed for measurements of the basic characteristics of the coronae. In this work, we utilize deep XMM-Newton observations of NGC 6753 to explore its extended X-ray corona in unprecedented detail. Specifically, we establish the isotropic morphology of the hot gas, suggesting that it resides in hydrostatic equilibrium. The temperature profile of the gas shows a decrease with increasing radius: it drops from $kTapprox0.7$ keV in the innermost parts to $kTapprox0.4$ keV at 50 kpc radius. The temperature map reveals the complex temperature structure of the gas. We study the metallicity distribution of the gas, which is uniform at $Zapprox0.1$ Solar. This value is about an order of magnitude lower than that obtained for elliptical galaxies with similar dark matter halo mass, hinting that the hot gas in spiral galaxies predominantly originates from external gas inflows rather than from internal sources. By extrapolating the density profile of the hot gas out to the virial radius, we estimate the total gas mass and derive the total baryon mass of NGC 6753. We conclude that the baryon mass fraction is $f_{rm b} approx 0.06$, implying that about half of the baryons are missing.
Dwarf spheroidal galaxies that form in halo substructures provide stringent constraints on dark matter annihilation. Many ultrafaint dwarfs discovered with modern surveys contribute significantly to these constraints. At present, because of the lack of abundant stellar kinematic data for the ultrafaints, non-informative prior assumptions are usually made for the parameters of the density profiles. Based on semi-analytic models of dark matter subhalos and their connection to satellite galaxies, we present more informative and realistic satellite priors. We show that our satellite priors lead to constraints on the annihilation rate that are between a factor of 2 and a factor of 7 weaker than under non-informative priors. As a result, the thermal relic cross section can at best only be excluded (with 95% probability) for dark matter masses of $lesssim 40$ GeV from dwarf spheroidal data, assuming annihilation into $bbar{b}$.
282 - Jiang-Tao Li 2018
The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these missing baryons may be stored in a hot tenuous circum-galactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev-Zeldovich (SZ) signal claimed that $sim(1-50)%$ of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%-20% of the virial radius). Here we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of $approx 200rm~kpc$ (or $approx130rm~kpc$ above the 1~$sigma$ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for $(8pm4)%$ of the baryonic mass expected for the halos. Including the stars, the baryon fraction is $(27pm16)%$, or $(39pm20)%$ by assuming a flattened density profile at $rgtrsim130rm~kpc$. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the missing baryons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا