Do you want to publish a course? Click here

Identification of the primary mass of inclined cosmic ray showers from depth of maximum and number of muons parameters

113   0   0.0 ( 0 )
 Added by Simone Riggi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present work we carry out a study of the high energy cosmic rays mass identification capabilities of a hybrid detector employing both fluorescence telescopes and particle detectors at ground using simulated data. It involves the analysis of extensive showers with zenith angles above 60 degrees making use of the joint distribution of the depth of maximum and muon size at ground level as mass discriminating parameters. The correlation and sensitivity to the primary mass are investigated. Two different techniques - clustering algorithms and neural networks - are adopted to classify the mass identity on an event-by-event basis. Typical results for the achieved performance of identification are reported and discussed. The analysis can be extended in a very straightforward way to vertical showers or can be complemented with additional discriminating observables coming from different types of detectors.



rate research

Read More

The spatial distribution of Cherenkov radiation from cascade showers generated by muons in water has been measured with Cherenkov water calorimeter (CWC) NEVOD. This result allowed to improve the techniques of treating cascade showers with unknown axes by means of CWC response analysis. The techniques of selecting the events with high energy cascade showers and reconstructing their parameters are discussed. Preliminary results of measurements of the spectrum of cascade showers in the energy range 100 GeV - 20 TeV generated by cosmic ray muons at large zenith angles and their comparison with expectation are presented.
44 - A. D. Supanitsky 2021
The origin and nature of the cosmic rays is still uncertain. However, a big progress has been achieved in recent years due to the good quality data provided by current and recent cosmic-rays observatories. The cosmic ray flux decreases very fast with energy in such a way that for energies $gtrsim 10^{15}$ eV, the study of these very energetic particles is performed by using ground based detectors. These detectors are able to detect the atmospheric air showers generated by the cosmic rays as a consequence of their interactions with the molecules of the Earths atmosphere. One of the most important observables that can help to understand the origin of the cosmic rays is the composition profile as a function of primary energy. Since the primary particle cannot be observed directly, its chemical composition has to be inferred from parameters of the showers that are very sensitive to the primary mass. The two parameters more sensitive to the composition of the primary are the atmospheric depth of the shower maximum and the muon content of the showers. Past and current cosmic-rays observatories have been using muon counters with the main purpose of measuring the muon content of the showers. Motivated by this fact, in this work we study in detail the estimation of the number of muons that hit a muon counter, which is limited by the number of segments of the counters and by the pile-up effect. We consider as study cases muon counters with segmentation corresponding to the underground muon detectors of the Pierre Auger Observatory that are currently taking data, and the one corresponding to the muon counters of the AGASA Observatory, which stopped taking data in 2004.
One of the uncertainties in interpretation of ultra-high energy cosmic ray (UHECR) data comes from the hadronic interaction models used for air shower Monte Carlo (MC) simulations. The number of muons observed at the ground from UHECR-induced air showers is expected to depend upon the hadronic interaction model. One may therefore test the hadronic interaction models by comparing the measured number of muons with the MC prediction. In this paper, we present the results of studies of muon densities in UHE extensive air showers obtained by analyzing the signal of surface detector stations which should have high $it{muon , purity}$. The muon purity of a station will depend on both the inclination of the shower and the relative position of the station. In 7 years data from the Telescope Array experiment, we find that the number of particles observed for signals with an expected muon purity of $sim$65% at a lateral distance of 2000 m from the shower core is $1.72 pm 0.10{rm (stat.)} pm 0.37 {rm (syst.)}$ times larger than the MC prediction value using the QGSJET II-03 model for proton-induced showers. A similar effect is also seen in comparisons with other hadronic models such as QGSJET II-04, which shows a $1.67 pm 0.10 pm 0.36$ excess. We also studied the dependence of these excesses on lateral distances and found a slower decrease of the lateral distribution of muons in the data as compared to the MC, causing larger discrepancy at larger lateral distances.
LOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 - 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available with open access in the KASCADE Cosmic Ray Data Center (KCDC). This article intends to provide a summary of the achievements, results, and lessons learned from LOPES. By digital, interferometric beamforming the detection of air showers became possible in the radio-loud environment of the Karlsruhe Institute of Technology (KIT). As a prototype experiment, LOPES tested several antenna types, array configurations and calibration techniques, and pioneered analysis methods for the reconstruction of the most important shower parameters, i.e., the arrival direction, the energy, and mass-dependent observables such as the position of the shower maximum. In addition to a review and update of previously published results, we also present new results based on end-to-end simulations including all known instrumental properties. For this, we applied the detector response to radio signals simulated with the CoREAS extension of CORSIKA, and analyzed them in the same way as measured data. Thus, we were able to study the detector performance more accurately than before, including some previously inaccessible features such as the impact of noise on the interferometric cross-correlation beam. These results led to several improvements, which are documented in this paper and can provide useful input for the design of future cosmic-ray experiments based on the digital radio-detection technique.
A self-consistent model of a one-dimensional cosmic-ray (CR) halo around the Galactic disk is formulated with the restriction to a minimum number of free parameters. It is demonstrated that the turbulent cascade of MHD waves does not necessarily play an essential role in the halo formation. Instead, an increase of the Alfven velocity with distance to the disk leads to an efficient generic mechanism of the turbulent redshift, enhancing CR scattering by the self-generated MHD waves. As a result, the calculated size of the CR halo at lower energies is determined by the halo sheath, an energy-dependent region around the disk beyond which the CR escape becomes purely advective. At sufficiently high energies, the halo size is set by the characteristic thickness of the ionized gas distribution. The calculated Galactic spectrum of protons shows a remarkable agreement with observations, reproducing the position of spectral break at ~ 0.6 TeV and the spectral shape up to ~ 10 TeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا