No Arabic abstract
PDFgetX3 is a new software application for converting X-ray powder diffraction data to atomic pair distribution function (PDF). PDFgetX3 has been designed for ease of use, speed and automated operation. The software can readily process hundreds of X-ray patterns within few seconds and is thus useful for high-throughput PDF studies, that measure numerous datasets as a function of time, temperature or other environment parameters. In comparison to the preceding programs, PDFgetX3 requires fewer inputs, less user experience and can be readily adopted by novice users. The live-plotting interactive feature allows to assess the effects of calculation parameters and select their optimum values. PDFgetX3 uses an ad-hoc data correction method, where the slowly-changing structure independent signal is filtered out to obtain coherent X-ray intensities that contain structure information. The outputs from PDFgetX3 have been verified by processing experimental PDFs from inorganic, organic and nanosized samples and comparing them to their counterparts from previous established software. In spite of different algorithm, the obtained PDFs were nearly identical and yielded highly similar results when used in structure refinement. PDFgetX3 is written in Python language and features well documented, reusable codebase. The software can be used either as standalone application or as a library of PDF-processing functions that can be called on from other Python scripts. The software is free for open academic research, but requires paid license for commercial use.
The increasing scientific and technological interest in nanoparticles has raised the need for fast, efficient and precise characterization techniques. Powder diffraction is a very efficient experimental method, as it is straightforward and non-destructive. However, its use for extracting information regarding very small particles brings some common crystallographic approximations to and beyond their limits of validity. Powder pattern diffraction calculation methods are critically discussed, with special focus on spherical particles with log-normal distribution, with the target of determining size distribution parameters. A 20-nm CeO$_{2}$ sample is analyzed as example.
Information on the lattice parameter of single crystals with known crystallographic structure allows for estimations of sample quality and composition. In many cases it is suffcient to determine one lattice parameter or the lattice spacing along a certain, high-symmetry direction, e.g. in order to determine the composition in a substitution series by taking advantage of Vegards rule. Here we present a guide to accurate measurements of single crystals with dimensions ranging from 200 $mu$m up to several millimeter using a standard powder diffractometer in Bragg-Brentano geometry. The correction of the error introduced by the sample height and the optimization of the alignment are discussed in detail. In particular for single crystals with a plate-like habit, the described procedure allows for measurement of the lattice spacings normal to the plates with high accuracy on a timescale of minutes.
The paper describes an extension of the Liga algorithm for structure solution from atomic pair distribution function (PDF), to handle periodic crystal structures with multiple elements in the unit cell. The procedure is performed in 2 separate steps - at first the Liga algorithm is used to find unit cell sites consistent with pair distances extracted from the experimental PDF. In the second step the assignment of atom species over cell sites is solved by minimizing the overlap of their empirical atomic radii. The procedure has been demonstrated on synchrotron x-ray PDF data from 16 test samples. The structure solution was successful for 14 samples including cases with enlarged super cells. The algorithm success rate and the reasons for failed cases are discussed together with enhancements that should improve its convergence and usability.
In this paper we investigated the most important family of proton conducting oxides, i.e. cerates, by means of pair distribution function analysis (PDF) obtained from total neutron scattering data. The results clearly demonstrates that the local structure plays a fundamental role in the protonation process. Oxygen vacancy creation by acceptor doping reduces the local structure symmetry which is then restored upon water uptake. This mechanism mainly involves the Ba-O shell which flexibility seems to be at the basis of the proton conduction mechanism, thus providing a direct insight on the design of optimal proton conducting materials.
We explore data reduction and correction steps and processed data reproducibility in the emerging single crystal total scattering based technique of three-dimensional differential atomic pair distribution function (3D-$Delta$PDF) analysis. All steps from sample measurement to data-processing are outlined in detail using a CuIr$_2$S$_4$ example crystal studied in a setup equipped with a high-energy x-ray beam and a flat panel area detector. Computational overhead as it pertains to data-sampling and the associated data processing steps is also discussed. Various aspects of the final 3D-$Delta$PDF reproducibility are explicitly tested by varying data-processing order and included steps, and by carrying out a crystal-to-crystal data comparison. We identify situations in which the 3D-$Delta$PDF is robust, and caution against a few particular cases which can lead to inconsistent 3D-$Delta$PDFs. Although not all the approaches applied here-in will be valid across all systems, and a more in-depth analysis of some of the effects of the data processing steps may still needed, the methods collected here-in represent the start of a more systematic discussion about data processing and corrections in this field.