The Lagrangian of a hypergraph has been a useful tool in hypergraph extremal problems. In most applications, we need an upper bound for the Lagrangian of a hypergraph. Frankl and Furedi in cite{FF} conjectured that the $r$-graph with $m$ edges formed by taking the first $m$ sets in the colex ordering of ${mathbb N}^{(r)}$ has the largest Lagrangian of all $r$-graphs with $m$ edges. In this paper, we give some partial results for this conjecture.
Frankl and Furedi conjectured in 1989 that the maximum Lagrangian, denoted by $lambda_r(m)$, among all $r$-uniform hypergraphs of fixed size $m$ is achieved by the minimum hypergraph $C_{r,m}$ under the colexicographic order. We say $m$ in {em principal domain} if there exists an integer $t$ such that ${t-1choose r}leq mleq {tchoose r}-{t-2choose r-2}$. If $m$ is in the principal domain, then Frankl-Furedis conjecture has a very simple expression: $$lambda_r(m)=frac{1}{(t-1)^r}{t-1choose r}.$$ Many previous results are focusing on $r=3$. For $rgeq 4$, Tyomkyn in 2017 proved that Frankl-F{u}redis conjecture holds whenever ${t-1choose r} leq m leq {tchoose r} -{t-2choose r-2}- delta_rt^{r-2}$ for a constant $delta_r>0$. In this paper, we improve Tyomkyns result by showing Frankl-F{u}redis conjecture holds whenever ${t-1choose r} leq m leq {tchoose r} -{t-2choose r-2}- delta_rt^{r-frac{7}{3}}$ for a constant $delta_r>0$.
There is a remarkable connection between the maximum clique number and the Lagrangian of a graph given by T. S. Motzkin and E.G. Straus in 1965. This connection and its extensions were successfully employed in optimization to provide heuristics for the maximum clique number in graphs. It is useful in practice if similar results hold for hypergraphs. In this paper, we explore evidences that the Lagrangian of a 3-uniform hypergraph is related to the order of its maximum cliques when the number of edges of the hypergraph is in certain range. In particular, we present some results about a conjecture introduced by Y. Peng and C. Zhao (2012) and describe a combinatorial algorithm that can be used to check the validity of the conjecture.
The Frankl conjecture (called also union-closed sets conjecture) is one of the famous unsolved conjectures in combinatorics of finite sets. In this short note, we introduce and to some extent justify some variants of the Frankl conjecture.
Let K_4^3-2e denote the hypergraph consisting of two triples on four points. For an integer n, let t(n, K_4^3-2e) denote the smallest integer d so that every 3-uniform hypergraph G of order n with minimum pair-degree delta_2(G) geq d contains floor{n/4} vertex-disjoint copies of K_4^3-2e. Kuhn and Osthus proved that t(n, K_4^3-2e) = (1 + o(1))n/4 holds for large integers n. Here, we prove the exact counterpart, that for all sufficiently large integers n divisible by 4, t(n, K_4^3-2e) = n/4 when n/4 is odd, and t(n, K_4^3-2e) = n/4+1 when n/4 is even. A main ingredient in our proof is the recent `absorption technique of Rodl, Rucinski and Szemeredi.
In this note we show that the maximum number of edges in a $3$-uniform hypergraph without a Berge cycle of length four is at most $(1+o(1))frac{n^{3/2}}{sqrt{10}}$. This improves earlier estimates by GyH{o}ri and Lemons and by Furedi and Ozkahya.