Do you want to publish a course? Click here

Relative Q-gradings from bordered Floer theory

306   0   0.0 ( 0 )
 Added by Robert Lipshitz
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we show how to recover the relative Q-grading in Heegaard Floer homology from the noncommutative grading on bordered Floer homology.



rate research

Read More

This is a survey of bordered Heegaard Floer homology, an extension of the Heegaard Floer invariant HF-hat to 3-manifolds with boundary. Emphasis is placed on how bordered Heegaard Floer homology can be used for computations.
We construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two differe
We describe some of the algebra underlying the decomposition of planar grid diagrams. This provides a useful toy model for an extension of Heegaard Floer homology to 3-manifolds with parametrized boundary. This paper is meant to serve as a gentle introduction to the subject, and does not itself have immediate topological applications.
We describe a weighted $A_infty$-algebra associated to the torus. We give a combinatorial construction of this algebra, and an abstract characterization. The abstract characterization also gives a relationship between our algebra and the wrapped Fukaya category of the torus. These algebras underpin the (unspecialized) bordered Heegaard Floer homology for three-manifolds with torus boundary, which will be constructed in forthcoming work.
We show that the bordered-sutured Floer invariant of the complement of a tangle in an arbitrary 3-manifold $Y$, with minimal conditions on the bordered-sutured structure, satisfies an unoriented skein exact triangle. This generalizes a theorem by Manolescu for links in $S^3$. We give a theoretical proof of this result by adapting holomorphic polygon counts to the bordered-sutured setting, and also give a combinatorial description of all maps involved and explicitly compute them. We then show that, for $Y = S^3$, our exact triangle coincides with Manolescus. Finally, we provide a graded version of our result, explaining in detail the grading reduction process involved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا