Do you want to publish a course? Click here

Computation of Balanced Equivalence Relations and their Lattice for a Coupled Cell Network

79   0   0.0 ( 0 )
 Added by Peter Cock
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

A coupled cell network describes interacting (coupled) individual systems (cells). As in networks from real applications, coupled cell networks can represent inhomogeneous networks where different types of cells interact with each other in different ways, which can be represented graphically by different symbols, or abstractly by equivalence relations. Various synchronous behaviors, from full synchrony to partial synchrony, can be observed for a given network. Patterns of synchrony, which do not depend on specific dynamics of the network, but only on the network structure, are associated with a special type of partition of cells, termed balanced equivalence relations. Algorithms in Aldis (2008) and Belykh and Hasler (2011) find the unique pattern of synchrony with the least clusters. In this paper, we compute the set of all possible patterns of synchrony and show their hierarchy structure as a complete lattice. We represent the network structure of a given coupled cell network by a symbolic adjacency matrix encoding the different coupling types. We show that balanced equivalence relations can be determined by a matrix computation on the adjacency matrix which forms a block structure for each balanced equivalence relation. This leads to a computer algorithm to search for all possible balanced equivalence relations. Our computer program outputs the balanced equivalence relations, quotient matrices, and a complete lattice for user specified coupled cell networks. Finding the balanced equivalence relations of any network of up to 15 nodes is tractable, but for larger networks this depends on the pattern of synchrony with least clusters.



rate research

Read More

The complexity of equivalence relations has received much attention in the recent literature. The main tool for such endeavour is the following reducibility: given equivalence relations $R$ and $S$ on natural numbers, $R$ is computably reducible to $S$ if there is a computable function $f colon omega to omega$ that induces an injective map from $R$-equivalence classes to $S$-equivalence classes. In order to compare the complexity of equivalence relations which are computable, researchers considered also feasible variants of computable reducibility, such as the polynomial-time reducibility. In this work, we explore $mathbf{Peq}$, the degree structure generated by primitive recursive reducibility on punctual equivalence relations (i.e., primitive recursive equivalence relations with domain $omega$). In contrast with all other known degree structures on equivalence relations, we show that $mathbf{Peq}$ has much more structure: e.g., we show that it is a dense distributive lattice. On the other hand, we also offer evidence of the intricacy of $mathbf{Peq}$, proving, e.g., that the structure is neither rigid nor homogeneous.
For networks of coupled dynamical systems we characterize admissible functions, that is, functions whose gradient is an admissible vector field. The schematic representation of a gradient network dynamical system is of an undirected cell graph, and we use tools from graph theory to deduce the general form of such functions, relating it to the topological structure of the graph defining the network. The coupling of pairs of dynamical systems cells is represented by edges of the graph, and from spectral graph theory we detect the existence and nature of equilibria of the gradient system from the critical points of the coupling function. In particular, we study fully synchronous and 2-state patterns of equilibria on regular graphs.These are two special types of equilibrium configurations for gradient networks. We also investigate equilibrium configurations of S1-invariant admissible functions on a ring of cells.
Very often, models in biology, chemistry, physics, and engineering are systems of polynomial or power-law ordinary differential equations, arising from a reaction network. Such dynamical systems can be generated by many different reaction networks. On the other hand, networks with special properties (such as reversibility or weak reversibility) are known or conjectured to give rise to dynamical systems that have special properties: existence of positive steady states, persistence, permanence, and (for well-chosen parameters) complex balancing or detailed balancing. These last two are related to thermodynamic equilibrium, and therefore the positive steady states are unique and stable. We describe a computationally efficient characterization of polynomial or power-law dynamical systems that can be obtained as complex-balanced, detailed-balanced, weakly reversible, and reversible mass-action systems.
We define a graph network to be a coupled cell network where there are only one type of cell and one type of symmetric coupling between the cells. For a difference-coupled vector field on a graph network system, all the cells have the same internal dynamics, and the coupling between cells is identical, symmetric, and depends only on the difference of the states of the interacting cells. We define four nested sets of difference-coupled vector fields by adding further restrictions on the internal dynamics and the coupling functions. These restrictions require that these functions preserve zero or are odd or linear. We characterize the synchrony and anti-synchrony subspaces with respect to these four subsets of admissible vector fields. Synchrony and anti-synchrony subspaces are determined by partitions and matched partitions of the cells that satisfy certain balance conditions. We compute the lattice of synchrony and anti-synchrony subspaces for several graph networks. We also apply our theory to systems of coupled van der Pol oscillators.
Microbial electrolysis cells (MECs) are a promising new technology for producing hydrogen cheaply, efficiently, and sustainably. However, to scale up this technology, we need a better understanding of the processes in the devices. In this effort, we present a differential-algebraic equation (DAE) model of a microbial electrolysis cell with an algebraic constraint on current. We then perform sensitivity and bifurcation analysis for the DAE system. The model can be applied either to batch-cycle MECs or to continuous-flow MECs. We conduct differential-algebraic sensitivity analysis after fitting simulations to current density data for a batch-cycle MEC. The sensitivity analysis suggests which parameters have the greatest influence on the current density at particular times during the experiment. In particular, growth and consumption parameters for exoelectrogenic bacteria have a strong effect prior to the peak current density. An alternative strategy to maximizing peak current density is maintaining a long term stable equilibrium with non-zero current density in a continuous-flow MEC. We characterize the minimum dilution rate required for a stable nonzero current equilibrium and demonstrate transcritical bifurcations in the dilution rate parameter that exchange stability between several curves of equilibria. Specifically, increasing the dilution rate transitions the system through three regimes where the stable equilibrium exhibits (i) competitive exclusion by methanogens, (ii) coexistence, and (iii) competitive exclusion by exolectrogens. Positive long term current production is only feasible in the final two regimes. These results suggest how to modify system parameters to increase peak current density in a batch-cycle MEC or to increase the long term current density equilibrium value in a continuous-flow MEC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا