No Arabic abstract
The impact of thermal fluctuations on the translocation dynamics of a polymer chain driven through a narrow pore has been investigated theoretically and by means of extensive Molecular-Dynamics (MD) simulation. The theoretical consideration is based on the so-called velocity Langevin (V-Langevin) equation which determines the progress of the translocation in terms of the number of polymer segments, $s(t)$, that have passed through the pore at time $t$ due to a driving force $f$. The formalism is based only on the assumption that, due to thermal fluctuations, the translocation velocity $v=dot{s}(t)$ is a Gaussian random process as suggested by our MD data. With this in mind we have derived the corresponding Fokker-Planck equation (FPE) which has a nonlinear drift term and diffusion term with a {em time-dependent} diffusion coefficient $D(t)$. Our MD simulation reveals that the driven translocation process follows a {em super}diffusive law with a running diffusion coefficient $D(t) propto t^{gamma}$ where $gamma < 1$. This finding is then used in the numerical solution of the FPE which yields an important result: for comparatively small driving forces fluctuations facilitate the translocation dynamics. As a consequence, the exponent $alpha$ which describes the scaling of the mean translocation time $<tau>$ with the length $N$ of the polymer, $<tau> propto N^{alpha}$ is found to diminish. Thus, taking thermal fluctuations into account, one can explain the systematic discrepancy between theoretically predicted duration of a driven translocation process, considered usually as a deterministic event, and measurements in computer simulations. In the non-driven case, $f=0$, the translocation is slightly subdiffusive and can be treated within the framework of fractional Brownian motion (fBm).
We present a theoretical argument to derive a scaling law between the mean translocation time $tau$ and the chain length $N$ for driven polymer translocation. This scaling law explicitly takes into account the pore-polymer interactions, which appear as a correction term to asymptotic scaling and are responsible for the dominant finite size effects in the process. By eliminating the correction-to-scaling term we introduce a rescaled translocation time and show, by employing both the Brownian Dynamics Tension Propagation theory [Ikonen {it et al.}, Phys. Rev. E {bf 85}, 051803 (2012)] and molecular dynamics simulations that the rescaled exponent reaches the asymptotic limit in a range of chain lengths that is easily accessible to simulations and experiments. The rescaling procedure can also be used to quantitatively estimate the magnitude of the pore-polymer interaction from simulations or experimental data. Finally, we also consider the case of driven translocation with hydrodynamic interactions (HIs). We show that by augmenting the BDTP theory with HIs one reaches a good agreement between the theory and previous simulation results found in the literature. Our results suggest that the scaling relation between $tau$ and $N$ is retained even in this case.
We present a Brownian dynamics model of driven polymer translocation, in which non-equilibrium memory effects arising from tension propagation (TP) along the cis side subchain are incorporated as a time-dependent friction. To solve the effective friction, we develop a finite chain length TP formalism, expanding on the work of Sakaue [Sakaue, PRE 76, 021803 (2007)]. The model, solved numerically, yields results in excellent agreement with molecular dynamics simulations in a wide range of parameters. Our results show that non-equilibrium TP along the cis side subchain dominates the dynamics of driven translocation. In addition, the model explains the different scaling of translocation time w.r.t chain length observed both in experiments and simulations as a combined effect of finite chain length and pore-polymer interactions.
We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory (IFTP), and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite persistence length $tilde{ell}_p$ the {it trans} side friction must be explicitly taken into account to properly describe the translocation process. In addition, the scaling of the end-to-end distance $R_N$ as a function of the chain length $N$ must be known. To this end, we first derive a semi-analytic scaling form for $R_N$, which reproduces the limits of a rod, an ideal chain, and an excluded volume chain in the appropriate limits. We then quantitatively characterize the nature of the {it trans} side friction based on MD simulations of semi-flexible chains. Augmented with these two factors, the modified IFTP theory shows that there are three main regimes for the scaling of the average translocation time $tau propto N^{alpha}$. In the stiff chain (rod) limit $N/tilde{ell}_p ll 1$, {$alpha = 2$}, which continuously crosses over in the regime $ 1 < N/tilde{ell}_p < 4$ towards the ideal chain behavior with {$alpha = 3/2$}, which is reached in the regime $N/tilde{ell}_p sim 10^2$. Finally, in the limit $N/tilde{ell}_p gg 10^6$ the translocation exponent approaches its symptotic value $1+ u$, where $ u$ is the Flory exponent. Our results are in good agreement with available simulations and experimental data.
Two phase picture is a simple and effective methodology to capture the nonequilibrium dynamics of polymer associated with tension propagation. When applying it to the driven translocation process, there is a point to be noted, as briefly discussed in our recent article [Phys. Rev. E 85, 061803 (2012)]. In this article, we address this issue in detail and modify our previous prediction [Euro. Phys. J. E 34, 135 (2011)] by adopting an alternative steady-state ansatz. The modified scaling prediction turns out to be the same as that of the iso-flux model recently proposed by Rowghanian and Grosberg [J. Phys. Chem. B 115, 14127-14135 (2011)].
Force-driven translocation of a macromolecule through a nanopore is investigated by taking into account the monomer-pore friction as well as the crowding of monomers on the {it trans} - side of the membrane which counterbalance the driving force acting in the pore. The set of governing differential-algebraic equations for the translocation dynamics is derived and solved numerically. The analysis of this solution shows that the crowding of monomers on the trans side hardly affects the dynamics, but the monomer-pore friction can substantially slow down the translocation process. Moreover, the translocation exponent $alpha$ in the translocation time - vs. - chain length scaling law, $tau propto N^{alpha}$, becomes smaller when monomer-pore friction coefficient increases. This is most noticeable for relatively strong forces. Our findings may explain the variety of $alpha$ values which were found in experiments and computer simulations.