Do you want to publish a course? Click here

Development status of the LAUE project

108   0   0.0 ( 0 )
 Added by Filippo Frontera
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the status of LAUE, a project supported by the Italian Space Agency (ASI), and devoted to develop Laue lenses with long focal length (up to 100 meters), for hard X--/soft gamma--ray astronomy (80-600 keV). Thanks to their focusing capability, the design goal is to improve the sensitivity of the current instrumention in the above energy band by 2 orders of magnitude, down to a few times $10^{-8}$ photons/(cm$^2$ s keV).



rate research

Read More

We report the status of the HAXTEL project, devoted to perform a design study and the development of a Laue lens prototype. After a summary of the major results of the design study, the approach adopted to develop a Demonstration Model of a Laue lens is discussed, the set up described, and some results presented.
The TOP-IMPLART project consists of the design and implementation of a linear proton accelerator, its control and monitoring systems for the treatment of superficial and semi-deep tumors. The energy of 150 MeV (corresponding to a penetration in tissue of about 15 cm) is a milestone in design being useful for the proton therapy treatment of almost 50% of tumors based on their position and depth (including ocular melanoma, head-neck tumors, pediatric tumors, and more superficial tumors). The capability to vary the intensity on a pulse-to-pulse basis combined with an electronic feedback system allows to get the required dose uniformity (2.5%) reducing the number of re-paintings. In this paper the state of the art and the objectives of the TOP-IMPLART project are described within the framework of the progress of Protontherapy.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV - 3 TeV is presented. The angular resolution of the instrument, 1-2{deg} at E{gamma} ~100 MeV and ~0.01^{circ} at E{gamma} > 100 GeV, its energy resolution ~1% at E{gamma} > 100 GeV, and the proton rejection factor ~10E6 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.
Gamma-ray astronomy holds a great potential for Astrophysics, Particle Physics and Cosmology. The CTA is an inter- national initiative to build the next generation of ground-based gamma-ray observatories, which will represent a factor of 5-10 times improvement in the sensitivity of observations in the range 100 GeV - 10 TeV, as well as an extension of the observational capabilities down to energies below 100 GeV and beyond 100 TeV. The array will consist of two telescope networks (one in the Northern Hemisphere and another in the South) so to achieve a full-sky coverage, and will be com- posed by a hybrid system of 4 different telescope types. It will operate as an observatory, granting open access to the community through calls for submission of proposals competing for observation time. The CTA will give us access to the non-thermal and high-energy universe at an unprecedented level, and will be one of the main instruments for high-energy astrophysics and astroparticle physics of the next 30 years. CTA has now entered its prototyping phase with the first, stand-alone instruments being built. Brazil is an active member of the CTA consortium, and the project is represented in Latin America also by Argentina, Mexico and Chile. In the next few months the consortium will define the site for instal- lation of CTA South, which might come to be hosted in the Chilean Andes, with important impact for the high-energy community in Latin America. In this talk we will present the basic concepts of the CTA and the detailed project of the observatory. Emphasis will be put on its scientific potential and on the Latin-American involvement in the preparation and construction of the observatory, whose first seed, the ASTRI mini-array, is currently being constructed in Sicily, in a cooperation between Italy, Brazil and South Africa.
SOXS (Son Of X-Shooter) is a forthcoming instrument for ESO-NTT, mainly dedicated to the spectroscopic study of transient events and is currently starting the AIT (Assembly, Integration, and Test) phase. It foresees a visible spectrograph, a near-Infrared (NIR) spectrograph, and an acquisition camera for light imaging and secondary guiding. The optimal setup and the monitoring of SOXS are carried out with a set of software-controlled motorized components and sensors. The instrument control software (INS) also manages the observation and calibration procedures, as well as maintenance and self-test operations. The architecture of INS, based on the latest release of the VLT Software (VLT2019), has been frozen; the code development is in an advanced state for what concerns supported components and observation procedures, which run in simulation. In this proceeding we present the INS current status, focusing in particular on the ongoing efforts in the support of two non-standard, special devices. The first special device is the piezoelectric slit exchanger for the NIR spectrograph; the second special device is the piezoelectric tip-tilt corrector used for active compensation of mechanical flexures of the instrument.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا