Do you want to publish a course? Click here

Itinerant Nature of U 5f States in Uranium Mononitride UN Revealed by Angle Resolved Photoelectron Spectroscopy

291   0   0.0 ( 0 )
 Added by Shin-ichi Fujimori
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic structure of the antiferromagnet uranium nitride (UN) has been studied by angle resolved photoelectron spectroscopy using soft X-rays (hn=420-520 eV). Strongly dispersive bands with large contributions from the U 5f states were observed in ARPES spectra, and form Fermi surfaces. The band structure as well as the Fermi surfaces in the paramagnetic phase are well explained by the band-structure calculation treating all the U 5f electrons as being itinerant, suggesting that itinerant description of the U 5f states is appropriate for this compound. On the other hand, changes in the spectral function due to the antiferromagnetic transition were very small. The shapes of the Fermi surfaces in a paramagnetic phase are highly three-dimensional, and the nesting of Fermi surfaces is unlikely as the origin of the magnetic ordering.



rate research

Read More

The electronic structure of the ferromagnetic superconductor URhGe in the paramagnetic phase has been studied by angle-resolved photoelectron spectroscopy using soft x rays (hn=595-700 eV). Dispersive bands with large contributions from U 5f states were observed in the ARPES spectra, and form Fermi surfaces. The band structure in the paramagnetic phase is partly explained by the band-structure calculation treating all U 5f electrons as being itinerant, suggesting that an itinerant description of U 5f states is a good starting point for this compound. On the other hand, there are qualitative disagreements especially in the band structure near the Fermi level (E_B < 0.5 eV). The experimentally observed bands are less dispersive than the calculation, and the shape of the Fermi surface is different from the calculation. The changes in spectral functions due to the ferromagnetic transition were observed in bands near the Fermi level, suggesting that the ferromagnetism in this compound has an itinerant origin.
The electronic structure of ThRu2Si2 was studied by angle-resolved photoelectron spectroscopy (ARPES) with incident photon energies of hn=655-745 eV. Detailed band structure and the three-dimensional shapes of Fermi surfaces were derived experimentally, and their characteristic features were mostly explained by means of band structure calculations based on the density functional theory. Comparison of the experimental ARPES spectra of ThRu2Si2 with those of URu2Si2 shows that they have considerably different spectral profiles particularly in the energy range of 1 eV from the Fermi level, suggesting that U 5f states are substantially hybridized in these bands. The relationship between the ARPES spectra of URu2Si2 and ThRu2Si2 is very different from the one between the ARPES spectra of CeRu2Si2 and LaRu2Si2, where the intrinsic difference in their spectra is limited only in the very vicinity of the Fermi energy. The present result suggests that the U 5f electrons in URu2Si2 have strong hybridization with ligand states and have an essentially itinerant character.
We have elucidated the nature of the electron correlation effect in uranium compounds by imaging the partial $mathrm{U}~5f$ density of states (pDOS) of typical itinerant, localized, and heavy fermion uranium compounds by using the $mathrm{U}~4d-5f$ resonant photoemission spectroscopy. Obtained $mathrm{U}~5f$ pDOS exhibit a systematic trend depending on the physical properties of compounds. The coherent peak at the Fermi level can be described by the band-structure calculation, but an incoherent peak emerges on the higher binding energy side ($lesssim 1~mathrm{eV}$) in the Uf pDOS of localized and heavy fermion compounds. As the $mathrm{U}~5f$ state is more localized, the intensity of the incoherent peak is enhanced and its energy position is shifted to higher binding energy. These behaviors are consistent with the prediction of the Mott metal-insulator transition, suggesting that the Hubbard-$U$ type mechanism takes an essential role in the $5f$ electronic structure of actinide materials.
Uranium and plutoniums 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (eg. the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization, for which a quantitative measure is lacking. By employing resonant x-ray emission spectroscopy (RXES) and x-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu, and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework for understanding the strongly-correlated behavior of actinide materials.
127 - Y. Takeda , T. Okane , T. Ohkochi 2009
We have investigated the electronic states of the uranium monochalcogenide US, which is a typical ferromagnetic uranium compound, using soft x-ray photoemission spectroscopy (SX-PES). In early ultraviolet photoemission spectroscopy studies, two peak structures of the U 5f states were observed and have been interpreted that one has an itinerant character around the Fermi level (EF) and the other located below EF has a character of localized U 5f electrons. In this study, the intrinsic bulk valence-band spectrum of US was first deduced by estimating the contribution of surface states to the valence-band spectrum using core-level photoemission spectra. We conclude that the electronic structure of US can be basically described by the itinerant nature of the U 5f electrons from comparison with theoretical valence-band spectra obtained by band-structure calculation in the local-density approximation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا