Do you want to publish a course? Click here

Black holes without firewalls

154   0   0.0 ( 0 )
 Added by David A. Lowe
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and re-emits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of order the black hole scrambling time.



rate research

Read More

We present a class of new black hole solutions in $D$-dimensional Lovelock gravity theory. The solutions have a form of direct product $mathcal{M}^m times mathcal{H}^{n}$, where $D=m+n$, $mathcal{H}^n$ is a negative constant curvature space, and are characterized by two integration constants. When $m=3$ and 4, these solutions reduce to the exact black hole solutions recently found by Maeda and Dadhich in Gauss-Bonnet gravity theory. We study thermodynamics of these black hole solutions. Although these black holes have a nonvanishing Hawking temperature, surprisingly, the mass of these solutions always vanishes. While the entropy also vanishes when $m$ is odd, it is a constant determined by Euler characteristic of $(m-2)$-dimensional cross section of black hole horizon when $m$ is even. We argue that the constant in the entropy should be thrown away. Namely, when $m$ is even, the entropy of these black holes also should vanish. We discuss the implications of these results.
164 - Orlando Alvarez 2009
These lectures describe how to study the geometry of some black holes without the use of coordinates.
We propose a correspondence between an Anyon Van der Waals fluid and a (2+1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter $alpha$ ($0<alpha<1$) characterizes this intermediate statistics of Anyons. The equation of state for the Anyon Van der Waals fluid shows that it has a quasi Fermi-Dirac statistics for $alpha > alpha_c$, but a quasi Bose-Einstein statistics for $alpha< alpha_c$. By defining a general form of the metric for the (2+1) dimensional AdS black hole and considering the temperature of the black hole to be equal with that of the Anyon Van der Waals fluid, we construct the exact form of the metric for a (2+1) dimensional AdS black hole. The thermodynamic properties of this black hole is consistent with those of the Anyon Van der Waals fluid. For $alpha< alpha_c$, the solution exhibits a quasi Bose-Einstein statistics. For $alpha > alpha_c$ and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.
We study rotating global AdS solutions in five-dimensional Einstein gravity coupled to a multiplet complex scalar within a cohomogeneity-1 ansatz. The onset of the gravitational and scalar field superradiant instabilities of the Myers-Perry-AdS black hole mark bifurcation points to black resonators and hairy Myers-Perry-AdS black holes, respectively. These solutions are subject to the other (gravitational or scalar) instability, and result in hairy black resonators which contain both gravitational and scalar hair. The hairy black resonators have smooth zero-horizon limits that we call graviboson stars. In the hairy black resonator and graviboson solutions, multiple scalar components with different frequencies are excited, and hence these are multioscillating solutions. The phase structure of the solutions are examined in the microcanonical ensemble, i.e. at fixed energy and angular momenta. It is found that the entropy of the hairy black resonator is never the largest among them. We also find that hairy black holes with higher scalar wavenumbers are entropically dominant and occupy more of phase space than those of lower wavenumbers.
165 - M.H. Dehghani , R. Pourhasan , 2011
We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the solutions, whereas for small black holes significant differences emerge. We generalize a relation previously obtained for neutral Lifshitz black branes, and study more generally the thermodynamic relationship between energy, entropy, and chemical potential. We also consider the effect of Maxwell charge on the effective potential between objects in the dual theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا