Do you want to publish a course? Click here

Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses

147   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. Brown dwarfs represent a sizable fraction of the stellar content of our Galaxy and populate the transition between the stellar and planetary mass regime. There is however no agreement on the processes responsible for their formation. Aims. We have conducted a large survey of the young, nearby cluster IC 348, to uncover its low-mass brown dwarf population and study the cluster properties in the substellar regime. Methods. Deep optical and near-IR images taken with MegaCam and WIRCam at the Canada-France-Hawaii Telescope (CFHT) were used to select photometric candidate members. A spectroscopic follow-up of a large fraction of the candidates was conducted to assess their youth and membership. Results. We confirmed spectroscopically 16 new members of the IC 348 cluster, including 13 brown dwarfs, contributing significantly to the substellar census of the cluster, where only 30 brown dwarfs were previously known. Five of the new members have a L0 spectral type, the latest-type objects found to date in this cluster. At 3 Myr, evolutionary models estimate these brown dwarfs to have a mass of ~13 Jupiter masses. Combining the new members with previous census of the cluster, we constructed the IMF complete down to 13 Jupiter masses. Conclusions. The IMF of IC 348 is well fitted by a log-normal function, and we do not see evidence for variations of the mass function down to planetary masses when compared to other young clusters.



rate research

Read More

129 - Andrew Burgess 2008
IC 348 is a young (t$sim$3Myr) and nearby (d$sim$340pc) star forming region in the Perseus molecular cloud. We performed a deep imaging survey using the MEGACAM (z-band) and WIRCAM (JHK and narrowband CH${_4}$ on/off) wide-field cameras on the Canada-France-Hawaii Telescope. From the analysis of the narrowband CH${_4}$ on/off deep images, we report 4 T-dwarf candidates, of which 3 clearly lie within the limits of the IC 348 cluster. An upper limit on the extinction was estimated for each candidate from colour-magnitude diagrams, and found consistent with extinction maps of the cloud. Initial comparisons with T-dwarf spectral models suggest these candidates have a spectral type between T3 and T5, and perhaps later, potentially making these among the lowest mass isolated objects detected in a young star forming region so far.
We analyzed the photometry of 20038 cool stars from campaigns 12, 13, 14 and 15 of the K2 mission in order to detect, characterize and validate new planetary candidates transiting low-mass stars. We present a catalogue of 25 new periodic transit-like signals in 22 stars, of which we computed the parameters of the stellar host for 19 stars and the planetary parameters for 21 signals. We acquired speckle and AO images, and also inspected archival Pan-STARRS1 images and Gaia DR2 to discard the presence of close stellar companions and to check possible transit dilutions due to nearby stars. False positive probability (FPP) was computed for 22 signals, obtaining FPP < $1%$ for 17. We consider 12 of them as statistically validated planets. One signal is a false positive and the remaining 12 signals are considered as planet candidates. 20 signals have orbital period P$_{rm orb} < 10$ $d$, 2 have $10$ $d < $ P$_{rm orb} < 20$ $d$ and 3 have P$_{rm orb} > 20$ $d$. Regarding radii, 11 candidates and validated planets have computed radius R $<2 R_{oplus}$, 9 have $2 R_{oplus} <$ R $< 4 R_{oplus}$, and 1 has R $>4 R_{oplus}$. 2 validated planets and 2 candidates are located in moderately bright stars ($m_{kep}<13$) and 2 validated planets and 3 candidates have derived orbital radius within the habitable zone according to optimistic models. Of special interest is the validated warm super-Earth EPIC 248616368b (T$rm_{eq} = 318^{+24}_{-43} , K$, S$_{rm p} = 1.7pm 0.2 , S_{oplus}$, R$_{rm p} = 2.1pm 0.1 , R_{oplus} $), located in a m$rm_{kep}$ = 14.13 star.
We present an analysis of low resolution infrared spectra for 20 brown dwarf candidates in the core of the $rho$ Ophiuchi molecular cloud. Fifteen of the sources display absorption-line spectra characteristic of late-type stars. By comparing the depths of water vapor absorption bands in our candidate objects with a grid of M dwarf standards, we derive spectral types which are independent of reddening. Optical spectroscopy of one brown dwarf candidate confirms the spectral type derived from the water bands. Combining their spectral types with published near-infrared photometry, effective temperatures and bolometric stellar luminosities are derived enabling us to place our sample on the Hertzsprung-Russell diagram. We compare the positions of the brown dwarf candidates in this diagram with two sets of theoretical models in order to estimate their masses and ages. Considering uncertainties in placing the candidates in the H-R diagram, six objects consistently lie in the brown dwarf regime and another five objects lie in the transition region between stellar and substellar objects. The ages inferred for the sample are consistent with those derived for higher mass association members. Three of the newly identified brown dwarfs display infrared excesses at $lambda$=2.2 $mu$m suggesting that young brown dwarfs can have active accretion disks. Comparing our mass estimates of the brown dwarf candidates with those derived from photometric data alone suggests that spectroscopy is an essential component of investigations of the mass functions of young clusters.
Aims. We present a method, named photo-type, to identify and accurately classify L and T dwarfs onto the standard spectral classification system using photometry alone. This enables the creation of large and deep homogeneous samples of these objects efficiently, without the need for spectroscopy. Methods. We created a catalogue of point sources with photometry in 8 bands, ranging from 0.75 to 4.6 microns, selected from an area of 3344 deg^2, by combining SDSS, UKIDSS LAS, and WISE data. Sources with 13.0 < J < 17.5, and Y - J > 0.8, were then classified by comparison against template colours of quasars, stars, and brown dwarfs. The L and T templates, spectral types L0 to T8, were created by identifying previously known sources with spectroscopic classifications, and fitting polynomial relations between colour and spectral type. Results. Of the 192 known L and T dwarfs with reliable photometry in the surveyed area and magnitude range, 189 are recovered by our selection and classification method. We have quantified the accuracy of the classification method both externally, with spectroscopy, and internally, by creating synthetic catalogues and accounting for the uncertainties. We find that, brighter than J = 17.5, photo-type classifications are accurate to one spectral sub-type, and are therefore competitive with spectroscopic classifications. The resultant catalogue of 1157 L and T dwarfs will be presented in a companion paper.
We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010-03-18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source lightcurve, we demonstrate that it is an irregular variable over time scales >200d. Its dereddened color, $(V-I)_{S,0}$, is 1.221$pm$0.051mag and from our lens model we derive a source radius of 14.7$pm$1.3 $R_{odot}$, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q=0.0654$pm$0.0006. The Einstein crossing time of the event, $T_{rm{E}}=44.3$pm$0.1d, was sufficiently long that the lightcurve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, $D_L$=2.8$pm$0.4kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with $M_{L,p}$=0.16$pm0.03M_{odot}$ while the companion has $M_{L,s}$=11.0$pm2.0M_{rm{J}}$ putting it in the boundary zone between planets and brown dwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا