No Arabic abstract
The investigation into the possible effects of cosmic rays on living organisms will also offer great interest. - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing the atmosphere, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ~ 3 billion years in presence of this background radiation, which itself has varied considerably during the period. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.
We present the main results on the energy spectrum and composition of the highest energy cosmic rays of energy exceeding 10$^{18}$ eV obtained by the High Resolution Flys Eye and the Southern Auger Observatory. The current results are somewhat contradictory and raise interesting questions about the origin and character of these particles.
Recent work by Aplin and Lockwood [1] was interpreted by them as showing that there is a multiplying ratio of order 10$^{12}$ for the infra-red energy absorbed in the ionization produced by cosmic rays in the atmosphere to the energy content of the cosmic rays themselves. We argue here that the interpretation of the result in terms of infra-red absorption by ionization is incorrect and that the result is therefore most likely due to a technical artefact
It has been claimed by others that observed temporal correlations of terrestrial cloud cover with `the cosmic ray intensity are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim to look for evidence to corroborate it. So far we have not found any and so our tentative conclusions are to doubt it. Such correlations as appear are more likely to be due to the small variations in solar irradiance, which, of course, correlate with cosmic rays. We estimate that less than 15% of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 35 years is due to this cause.
A general sketch on how the problem of space dimensionality depends on anthropic arguments is presented. Several examples of how life has been used to constraint space dimensionality (and vice-versa) are reviewed. In particular, the influences of three-dimensionality in the solar system stability and the origin of life on Earth are discussed. New constraints on space dimensionality and on its invariance in very large spatial and temporal scales are also stressed.
We describe the current situation of the data on the highest energy particles in the Universe - the ultrahigh energy cosmic rays. The new results in the field come from the Telescope Array experiment in Utah, U.S.A. For this reason we concentrate on the results from this experiments and compare them to the measurements of the other two recent experiments, the High Resolution Flys Eye and the Southern Auger Observatory