Do you want to publish a course? Click here

An analysis of star formation with Herschel in the Hi-GAL Survey. I. The Science Demonstration Phase Fields

133   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Herschel survey of the Galactic Plane (Hi-GAL) provides a unique opportunity to study star formation over large areas of the sky and different environments in the Milky Way. We use the best studied Hi-GAL fields to date, two 2x2 tiles centered on (l, b) = (30, 0) deg and (l, b) = (59, 0) deg, to study the star formation activity using a large sample of well selected young stellar objects (YSOs). We estimate the star formation rate (SFR) for these fields using the number of candidate YSOs and their average time scale to reach the Zero Age Main Sequence, and compare it with the rate estimated using their integrated luminosity at 70 micron combined with an extragalactic star formation indicator. We measure a SFR of (9.5 +- 4.3)*10^{-4} Msol/yr and (1.6 +- 0.7)*10^{-4} Msol/yr with the source counting method, in l=30 deg and l=59 deg, respectively. Results with the 70 micron estimator are (2.4 +- 0.4)*10^{-4} Msol/yr and (2.6 +- 1.1)*10^{-6} Msol/yr. Since the 70 micron indicator is derived from averaging extragalactic star forming complexes, we perform an extrapolation of these values to the whole Milky Way and obtain SFR_{MW} = (0.71 +- 0.13) Msol/yr from l = 30 deg and SFR_{MW} = (0.10 +- 0.04) Msol/yr from l=59 deg. The estimates in l=30 deg are in agreement with the most recent results on the Galactic star formation activity, indicating that the characteristics of this field are likely close to those of the star-formation dominated galaxies used for its derivation. Since the sky coverage is limited, this analysis will improve when the full Hi-GAL survey will be available.



rate research

Read More

We present the physical and evolutionary properties of prestellar and protostellar clumps in the Herschel Infrared GALactic plane survey (Hi-GAL) in two large areas centered in the Galactic plane and covering the tips of the long Galactic bar at the intersection with the spiral arms. The areas fall in the longitude ranges 19 < l < 33 and 340 < l < 350, while latitude is -1 < b < 1. Newly formed high mass stars and prestellar objects are identified and their properties derived and compared. A study is also presented on five giant molecular complexes at the further edge of the bar. The star-formation rate was estimated from the quantity of proto-stars expected to form during the collapse of massive turbulent clumps into star clusters. This new method was developed by applying a Monte Carlo procedure to an evolutionary model of turbulent cores and takes into account the wide multiplicity of sources produced during the collapse. The star-formation rate density values at the tips are 1.2 +- 0.3 10-3 Msol/yr/kpc2 and 1.5+-0.3 10-3 Msol/yr/kpc2 in the first and fourth quadrant, respectively. The same values estimated on the entire field of view, that is including the tips of the bar and background and foreground regions, are 0.9+-0.2 10-3 Msol/yr/kpc2 and 0.8+-0.2 10-3 Msol/yr/kpc2. The conversion efficiency is approximately 0.8% in the first quadrant and 0.5% in the fourth quadrant, and does not show a significant difference in proximity of the bar. The star forming regions identified through CO contours at the further edge of the bar show star-formation rate densities larger than the surrounding regions but their conversion efficiencies are comparable. Our results suggest that the star-formation activity at the bar is due to a large amount of dust and molecular material rather than being due to a triggering process.
We present a first study of the star-forming compact dust condensations revealed by Herschel in the two 2 times 2 degr Galactic Plane fields centered at [l;b] = [30degr; 0 degr] and [l;b] = [59degr; 0 degr], respectively, and observed during the Science Demonstration Phase for the Herschel infrared Galactic Plane survey (Hi-GAL) Key-Project. Compact source catalogs extracted for the two fields in the five Hi-GAL bands (70, 160, 250, 350 and 500 $mu$m) were merged based on simple criteria of positional association and spectral energy distribution (SED) consistency into a final catalog which contains only coherent SEDs with counterparts in at least three adjacent Herschel bands. These final source lists contain 528 entries for the l = 30degr field, and 444 entries for the l = 59degr field. The SED coverage has been augmented with ancillary data at 24 $mu$m and 1.1 mm. SED modeling for the subset of 318 and 101 sources (in the two fields, respectively) for which the distance is known was carried out using both a structured star/disk/envelope radiative transfer model and a simple isothermal grey-body. Global parameters like mass, luminosity, temperature and dust properties have been estimated. The Lbol/Menv ratio spans four orders of magnitudes from values compatible with the pre-protostellar phase to embedded massive zero-age main sequence stars. Sources in the l = 59degr field have on average lower L/M, possibly outlining an overall earlier evolutionary stage with respect to the sources in the l = 30degr field. Many of these cores are actively forming high-mass stars, although the estimated core surface densities appear to be an order of magnitude below the 1 g cm$^{-2}$ critical threshold for high-mass star formation.
We present a Herschel far-infrared study towards the rich massive star- forming complex G305, utilising PACS 70, 160 {mu}m and SPIRE 250, 350, and 500 {mu}m observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanol maser, MIPS, and Red MSX Source survey data available from previous studies. By applying a frequentist technique we are able to identify a sample of the most likely associations within our multi-wavelength dataset, that can then be identified from the derived properties obtained from fitted spectral energy distributions (SEDs). By SED modelling using both a simple modified blackbody and fitting to a comprehensive grid of model SEDs, some 16 candidate associations are identified as embedded massive star-forming regions. We derive a two-selection colour criterion from this sample of log(F70/F500)geq 1 and log(F160/F350)geq 1.6 to identify an additional 31 embedded massive star candidates with no associated star-formation tracers. Using this result we can build a picture of the present day star-formation of the complex, and by extrapolating an initial mass function, suggest a current population of approx 2 times 10^4 young stellar objects (YSOs) present, corresponding to a star formation rate (SFR) of 0.01-0.02 Modot yr^-1. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of geq 2 in comparison to the SFR derived from the YSO population.
130 - D. Stamatellos 2010
We demonstrate the use of the 3D Monte Carlo radiative transfer code PHAETHON to model infrared-dark clouds (IRDCs) that are externally illuminated by the interstellar radiation field (ISRF). These clouds are believed to be the earliest observed phase of high-mass star formation, and may be the high-mass equivalent of lower-mass prestellar cores. We model three different cases as examples of the use of the code, in which we vary the mass, density, radius, morphology and internal velocity field of the IRDC. We show the predicted output of the models at different wavelengths chosen to match the observing wavebands of Herschel and Spitzer. For the wavebands of the long- wavelength SPIRE photometer on Herschel, we also pass the model output through the SPIRE simulator to generate output images that are as close as possible to the ones that would be seen using SPIRE. We then analyse the images as if they were real observations, and compare the results of this analysis with the results of the radiative transfer models. We find that detailed radiative transfer modelling is necessary to accurately determine the physical parameters of IRDCs (e.g. dust temperature, density profile). This method is applied to study G29.55+00.18, an IRDC observed by the Herschel Infrared Galactic Plane survey (Hi-GAL), and in the future it will be used to model a larger sample of IRDCs from the same survey.
224 - T. Ueta , D. Ladjal , K. M. Exter 2014
This is the first of a series of investigations into far-IR characteristics of 11 planetary nebulae (PNs) under the Herschel Space Observatory Open Time 1 program, Herschel Planetary Nebula Survey (HerPlaNS). Using the HerPlaNS data set, we look into the PN energetics and variations of the physical conditions within the target nebulae. In the present work, we provide an overview of the survey, data acquisition and processing, and resulting data products. We perform (1) PACS/SPIRE broadband imaging to determine the spatial distribution of the cold dust component in the target PNs and (2) PACS/SPIRE spectral-energy-distribution (SED) and line spectroscopy to determine the spatial distribution of the gas component in the target PNs. For the case of NGC 6781, the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbon-richdust shell and the surrounding halo having temperatures of 26-40 K. The PACS/SPIRE multi-position spectra show spatial variations of far-IR lines that reflect the physical stratification of the nebula. We demonstrate that spatially-resolved far-IR line diagnostics yield the (T_e, n_e) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allows to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195+-110. The present analysis yields estimates of the total mass of the shell to be 0.86 M_sun, consisting of 0.54 M_sun of ionized gas, 0.12 M_sun of atomic gas, 0.2 M_sun of molecular gas, and 4 x 10^-3 M_sun of dust grains. These estimates also suggest that the central star of about 1.5 M_sun initial mass is terminating its PN evolution onto the white dwarf cooling track.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا