Do you want to publish a course? Click here

Universal local pair correlations of Lieb-Liniger bosons at quantum criticality

151   0   0.0 ( 0 )
 Added by Murray Batchelor
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion quantum criticality. We analytically calculate finite temperature local pair correlations for the strong coupling Bose gas at quantum criticality using the polylog function in the framework of the Yang-Yang thermodynamic equations. We show that the local pair correlation has the universal value $g^{(2)}(0)approx 2 p/(nvarepsilon)$ in the quantum critical regime, the TLL phase and the quasi-classical region, where $p$ is the pressure per unit length rescaled by the interaction energy $varepsilon=frac{hbar^2}{2m} c^2$ with interaction strength $c$ and linear density $n$. This suggests the possibility to test finite temperature local pair correlations for the TLL in the relativistic dispersion regime and to probe quantum criticality with the local correlations beyond the TLL phase. Furthermore, thermodynamic properties at high temperatures are obtained by both high temperature and virial expansion of the Yang-Yang thermodynamic equation.



rate research

Read More

Taking advantage of an exact mapping between a relativistic integrable model and the Lieb-Liniger model we present a novel method to compute expectation values in the Lieb-Liniger Bose gas both at zero and finite temperature. These quantities, relevant in the physics of one-dimensional ultracold Bose gases, are expressed by a series that has a remarkable behavior of convergence. Among other results, we show the computation of the three-body expectation value at finite temperature, a quantity that rules the recombination rate of the Bose gas.
The repulsive Lieb-Liniger model can be obtained as the non-relativistic limit of the Sinh-Gordon model: all physical quantities of the latter model (S-matrix, Lagrangian and operators) can be put in correspondence with those of the former. We use this mapping, together with the Thermodynamical Bethe Ansatz equations and the exact form factors of the Sinh-Gordon model, to set up a compact and general formalism for computing the expectation values of the Lieb-Liniger model both at zero and finite temperature. The computation of one-point correlators is thoroughly detailed and, when possible, compared with known results in the literature.
143 - Spyros Sotiriadis 2020
Aiming at studying the emergence of Non-Equilibrium Steady States (NESS) in quantum integrable models by means of an exact analytical method, we focus on the Tonks-Girardeau or hard-core boson limit of the Lieb-Liniger model. We consider the abrupt expansion of a gas from one half to the entire confining box, a prototypical case of inhomogeneous quench, also known as geometric quench. Based on the exact calculation of quench overlaps, we develop an analytical method for the derivation of the NESS by rigorously treating the thermodynamic and large time and distance limit. Our method is based on complex analysis tools for the derivation of the asymptotics of the many-body wavefunction, does not make essential use of the effectively non-interacting character of the hard-core boson gas and is sufficiently robust for generalisation to the genuinely interacting case.
108 - Spyros Sotiriadis 2020
We continue our study of the emergence of Non-Equilibrium Steady States in quantum integrable models focusing on the expansion of a Lieb-Liniger gas for arbitrary repulsive interaction. As a first step towards the derivation of the asymptotics of observables in the thermodynamic and large distance and time limit, we derive an exact multiple integral representation of the time evolved many-body wave-function. Starting from the known but complicated expression for the overlaps of the initial state of a geometric quench, which are derived from the Slavnov formula for scalar products of Bethe states, we eliminate the awkward dependence on the system size and distinguish the Bethe states into convenient sectors. These steps allow us to express the rather impractical sum over Bethe states as a multiple rapidity integral in various alternative forms. Moreover, we examine the singularities of the obtained integrand and calculate the contribution of the multivariable kinematical poles, which is essential information for the derivation of the asymptotics of interest.
The kicked rotor system is a textbook example of how classical and quantum dynamics can drastically differ. The energy of a classical particle confined to a ring and kicked periodically will increase linearly in time whereas in the quantum version the energy saturates after a finite number of kicks. The quantum system undergoes Anderson localization in the angular-momentum space. Conventional wisdom says that in a many-particle system with short-range interactions the localization will be destroyed due to the coupling of widely separated momentum states. Here we provide evidence that for an interacting one-dimensional Bose gas, the Lieb-Linger model, the dynamical localization can persist.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا