Do you want to publish a course? Click here

Formation of eta-prime(958)-mesic nuclei by (p,d) reaction

201   0   0.0 ( 0 )
 Added by Hideko Nagahiro
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We calculate theoretically the formation spectra of eta(958)-nucleus systems in the (p,d) reaction for the investigation of the in-medium modification of the eta mass. We show the comprehensive numerical calculations based on a simple form of the eta optical potential in nuclei with various potential depths. We conclude that one finds an evidence of possible attractive interaction between eta and nucleus as peak structure appearing around the eta threshold in light nuclei such as 11C when the attractive potential is stronger than 100 MeV and the absorption width is of order of 40 MeV or less. Spectroscopy of the (p,d) reaction is expected to be performed experimentally at existing facilities, such as GSI. We also estimate the contributions from the omega and phi mesons, which have masses close to the eta meson, concluding that the observation of the peak structure of the eta-mesic nuclei is not disturbed although their contributions may not be small.

rate research

Read More

We are going to perform an inclusive spectroscopy experiment of eta mesic nuclei with the 12C(p,d) reaction to study in-medium properties of the eta meson. In nuclear medium, the eta meson mass may be reduced due to partial restoration of chiral symmetry. In case of sufficiently large mass reduction and small absorption width of eta at normal nuclear density, peak structures of eta mesic states in 11C will be observed near the eta emission threshold even in an inclusive spectrum. The experiment will be carried out at GSI with proton beam supplied by SIS using FRS as a spectrometer. The detail of the experiment is described.
We calculate formation spectra of eta-nucleus systems in (pi,N) reactions with nuclear targets, which can be performed at existing and/or forthcoming facilities, including J-PARC, in order to investigate eta-nucleus interactions. Based on the N^*(1535) dominance in the eta N system, eta-mesic nuclei are suitable systems for study of in-medium properties of the N^*(1535) baryon resonance, such as reduction of the mass difference of N and N^* in nuclear medium, which affects level structure of the eta and N^*-hole modes. We find that clear information on the in-medium N^*- and eta-nucleus interactions can be obtained through the formation spectra of the eta-mesic nuclei. We also discuss the experimental feasibilities by showing several spectra of (pi,N) reactions calculated with possible experimental settings. Coincident measurements of pi N pairs from the N^* decays in nuclei help us to reduce backgrounds.
A novel method is proposed to measure eta(958) meson bound states in 11C nuclei by missing mass spectroscopy of the 12C(p,d) reaction near the eta production threshold. It is shown that peak structures will be observed experimentally in an inclusive measurement in case that the in-medium eta mass reduction is sufficiently large and that the decay width of eta mesic states is narrow enough. Such a measurement will be feasible with the intense proton beam supplied by the SIS synchrotron at GSI combined with the good energy resolution of the fragment separator FRS.
The mass of the {eta} meson is theoretically expected to be reduced at finite density, which indicates the existence of {eta}-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {eta} production threshold. The overview of the experimental situation is given and the current status is discussed.
58 - Q. Haider , L. C. Liu 2015
Eta-mesic nucleus or the quasibound nuclear state of an eta ($eta$) meson in a nucleus is caused by strong-interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. In this paper, we review and analyze in great detail the models of the fundamental $eta$--nucleon interaction leading to the formation of an $eta$--mesic nucleus, the methods used in calculating the properties of a bound $eta$, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the $eta$--mesic nucleus $^{25}$Mg$_{eta}$ and other promising experimental results, future direction in searching for more $eta$--mesic nuclei is suggested.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا