Do you want to publish a course? Click here

Search of systematic behavior of breakup probability in reactions with weakly bound projectiles at energies around Coulomb barrier

219   0   0.0 ( 0 )
 Added by Vazgen Sargsyan Dr.
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Comparing the capture cross sections calculated without the breakup effect and experimental complete fusion cross sections, the breakup was analyzed in reactions with weakly bound projectiles $^{6,7,9}$Li, $^{9,11}$Be, and $^{6,8}$He. A trend of a systematic behavior for the complete fusion suppression as a function of the target charge and bombarding energy is not achieved. The quasielastic backscattering is suggested to be an useful tool to study the behavior of the breakup probability in reactions with weakly bound projectiles.



rate research

Read More

Complete fusion excitation functions of reactions involving breakup are studied by using the empirical coupled-channel (ECC) model with breakup effects considered. An exponential function with two parameters is adopted to describe the prompt-breakup probability in the ECC model. These two parameters are fixed by fitting the measured prompt-breakup probability or the complete fusion cross sections. The suppression of complete fusion at energies above the Coulomb barrier is studied by comparing the data with the predictions from the ECC model without the breakup channel considered. The results show that the suppression of complete fusion are roughly independent of the target for the reactions involving the same projectile.
A large number of complete fusion excitation functions of reactions including the breakup channel were measured in recent decades, especially in the last few years. It allows us to investigate the systematic behavior of the breakup effects on the complete fusion cross sections. To this end, we perform a systematic study of the breakup effects on the complete fusion cross sections at energies above the Coulomb barrier. The reduced fusion functions F(x) are compared with the universal fusion functions which are used as a uniform standard reference. The complete fusion cross sections at energies above the Coulomb barrier are suppressed by the breakup of projectiles. This suppression effect for reactions induced by the same projectile is independent of the target and mainly determined by the lowest energy breakup channel of the projectile. There holds a good exponential relation between the suppression factor and the energy corresponding to the lowest breakup threshold.
We have performed CDCC calculations for collisions of $^{7}$Li projectiles on $^{59}$Co, $^{144}$Sm and $^{208}$Pb targets at near-barrier energies, to assess the importance of the Coulomb and the nuclear couplings in the breakup of $^{7}$Li, as well as the Coulomb-nuclear interference. We have also investigated scaling laws, expressing the dependence of the cross sections on the charge and the mass of the target. This work is complementary to the one previously reported by us on the breakup of $^{6}$Li. Here we explore the similarities and differences between the results for the two Lithium isotopes. The relevance of the Coulomb dipole strength at low energy for the two-cluster projectile is investigated in details.
The virtual photon theory (VPT), which is based on first-order Coulomb dissociation restricted to the electric dipole ($E1$), has been successfully used to explain the breakup data for several cases. Our aim is to study the role of various higher-order processes that are ignored in the VPT, such as the nuclear breakup, interference between nuclear and Coulomb amplitudes, and multistep breakup processes mainly due to strong continuum-continuum couplings in the breakup of two-body projectiles on a heavy target at both intermediate and higher incident energies. For the purpose of numerical calculations, we employed eikonal version of three-body continuum-discretized coupled-channels (CDCC) reaction model. Our results for the breakup of $^{11}$Be and $^{17}$F on $^{208}$Pb target at 100, 250, and 520 MeV/A, show the importance of nuclear breakup contribution, and its significant role in the multistep processes. The multistep effect on Coulomb breakup for core-neutron projectile was found to be negligible, whereas it was important for core-proton projectile. Coulomb-nuclear interference (CNI) effect was also found to be non-negligible. Quantitatively, the multistep effects due to the nuclear breakup was found to depend on the incident energy through the energy dependence of the core-target and nucleon-target nuclear potentials. The nuclear breakup component, the CNI effect, and the multistep breakup processes are all found to be non-negligible; hence, the assumptions adopted in the VPT for the accurate description of breakup cross sections are not valid.
65 - N. Keeley 2007
The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to bare no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the bare calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا