Do you want to publish a course? Click here

ALICE results on quarkonia

147   0   0.0 ( 0 )
 Added by Enrico Scomparin
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The ALICE experiment has measured quarkonia production in pp and Pb-Pb collisions at the CERN LHC, in the rapidity ranges |y|<0.9 and 2.5<y<4. Quarkonia are considered to be a sensitive probe of deconfinement, and a detailed differential study of their yields can give important information on the properties of the medium created in heavy-ion collisions. In this paper, we will mainly discuss the centrality dependence of the J/psi nuclear modification factors, as well as their p_T and y dependence in bins of centrality, which will be then compared to theoretical models. Preliminary results on the J/psi elliptic flow and on psi(2S) production will also be shown.



rate research

Read More

195 - Alice Ohlson 2015
The discovery of correlations between particles separated by several units of pseudorapidity in high-multiplicity pp and p-Pb collisions, reminiscent of structures observed in Pb-Pb collisions, was a challenge to traditional ideas about collectivity in heavy ion collisions. In order to further explore long-range correlations and provide information to theoretical models, correlations between forward trigger muons and mid-rapidity associated hadrons were measured in p-Pb collisions at $sqrt{s_{mbox{NN}}} = 5.02~mbox{TeV}$. The results demonstrate that the nearside and awayside ridges extend to $Deltaeta sim pm 5$ and that the $v_2$ of muons, obtained from subtracting the correlation functions in high- and low-multiplicity events, is $(16pm6)%$ higher in the Pb-going than in the p-going direction. The results are compared with AMPT simulations.
Angular correlations are a sensitive probe of the transport properties of the system produced in nucleus-nucleus collisions. Similar studies performed in p-Pb collisions have recently revealed intriguing features as well. In this article, we review the latest results on charged and identified particle correlations obtained with the ALICE detector at the LHC in both Pb-Pb and p-Pb events.
180 - Debasish Das 2011
A precise measurement of the heavy-flavor production cross-sections in pp collisions is an essential baseline for the heavy-ion program. In addition it is a crucial test of pQCD models in the new energy regime at LHC. ALICE measures the muons from the decay of charmonium resonances and from the semileptonic decay of heavy-flavored hadrons in its forward (-4.0 $<$ $eta$ $<$ -2.5) Muon Spectrometer. We discuss the status of the detector and present results of data taken in pp collisions at $sqrt{s}$=7 TeV.
The ALICE experiment at the Large Hadron Collider at CERN is optimized to study the properties of the hot, dense matter created in high energy nuclear collisions in order to improve our understanding of the properties of nuclear matter under extreme conditions. In 2009 the first proton beams were collided at the Large Hadron collider and since then data from proton-proton collisions at $sqrt{s}$ = 0.9, 2.36, 2.76, and 7 TeV have been taken. Results from pp collisions provide significant constraints on models. In particular, results on strange particles indicate that Monte Carlo generators still have considerable difficulty describing strangeness production. In 2010 the first lead nuclei were collided at $sqrt{s_{NN}}$ = 2.76 TeV. Results from Pb+Pb demonstrate suppression of particle production relative to that observed in pp collisions, consistent with expectations based on data available at lower energies.
120 - Debasish Das 2012
Muons from the decay of charmonium resonances are detected in the ALICE Experiment at the Large Hadron Collider(LHC) for pp and Pb-Pb collisions with a muon spectrometer, covering the forward rapidity region 2.5$<$ $y$ $<$4.0. Analysis of the nuclear modification factor ($R_{rm AA}$) at forward rapidity are presented and compared with mid-rapidity results from electrons in the central barrel covering $|y|<$0.9. The roles of suppression and regeneration mechanisms are discussed, as well as the importance of the results of the forthcoming p-Pb data taking for the estimate of cold nuclear matter effects on quarkonia. Perspectives for the bottomonia measurements are also given. Quarkonia results via muon channel from CMS experiment at LHC are compared with ALICE quarkonia measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا