No Arabic abstract
The K2.5 dwarf HD 40307 has been reported to host three super-Earths. The system lacks massive planets and is therefore a potential candidate for having additional low-mass planetary companions. We re-derive Doppler measurements from public HARPS spectra of HD 40307 to confirm the significance of the reported signals using independent data analysis methods. We also investigate these measurements for additional low-amplitude signals. We used Bayesian analysis of our radial velocities to estimate the probability densities of different model parameters. We also estimated the relative probabilities of models with differing numbers of Keplerian signals and verified their significance using periodogram analyses. We investigated the relation of the detected signals with the chromospheric emission of the star. As previously reported for other objects, we found that radial velocity signals correlated with the S-index are strongly wavelength dependent. We identify two additional clear signals with periods of 34 and 51 days, both corresponding to planet candidates with minimum masses a few times that of the Earth. An additional sixth candidate is initially found at a period of 320 days. However, this signal correlates strongly with the chromospheric emission from the star and is also strongly wavelength dependent. When analysing the red half of the spectra only, the five putative planetary signals are recovered together with a very significant periodicity at about 200 days. This signal has a similar amplitude as the other new signals reported in the current work and corresponds to a planet candidate with M sin i = 7 Me (HD 40307 g). ...
We present the discovery of a super-earth-sized planet in or near the habitable zone of a sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the three-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.1%. The inner planet, Kepler-69b, has a radius of 2.24+/-0.4 Rearth and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-size object with a radius of 1.7+/-0.3 Rearth and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 +/- 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.
The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. We use the CHARA Array to directly determine the following of 55 Cncs stellar astrophysical parameters: $R=0.943 pm 0.010 R_{odot}$, $T_{rm EFF} = 5196 pm 24$ K. Planet 55 Cnc f ($M sin i = 0.155 M_{Jupiter}$) spends the majority of the duration of its elliptical orbit in the circumstellar habitable zone (0.67--1.32 AU) where, with moderate greenhouse heating, it could harbor liquid water. Our determination of 55 Cancris stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e ($simeq 2.1 R_{earth}$), which, depending on the assumed literature value of planetary mass, implies a bulk density of 0.76 $rho_{earth}$ or 1.07 $rho_{earth}$.
We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly-circular 9.4-year orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68+/-0.03 days and minimum mass (m sin i) of 5.4+/-1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e=0.18+/-0.13) towards the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a super-Venus, featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own Solar system.
Kapteyns star is an old M subdwarf believed to be a member of the Galactic halo population of stars. A recent study has claimed the existence of two super-Earth planets around the star based on radial velocity (RV) observations. The innermost of these candidate planets--Kapteyn b (P = 48 days)--resides within the circumstellar habitable zone. Given recent progress in understanding the impact of stellar activity in detecting planetary signals, we have analyzed the observed HARPS data for signatures of stellar activity. We find that while Kapteyns star is photometrically very stable, a suite of spectral activity indices reveals a large-amplitude rotation signal, and we determine the stellar rotation period to be 143 days. The spectral activity tracers are strongly correlated with the purported RV signal of planet b, and the 48-day period is an integer fraction (1/3) of the stellar rotation period. We conclude that Kapteyn b is not a planet in the Habitable Zone, but an artifact of stellar activity.
We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the ESO public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and other instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/PFS and Keck/HIRES spectrometers, reveals 3 additional signals beyond the previously reported 7.2-day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (Period sim 10 years). The 28-day signal implies a planet candidate with a minimum mass of 4.5 Mearth orbiting well within the canonical definition of the stars liquid water habitable zone, this is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition and interior dynamics. The 75-day signal is less certain, being significantly affected by aliasing interactions among a potential 91-day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal poor compared to the Sun. The presence of a super-Earth in the habitable zone of a metal poor M dwarf in a triple star system, supports the evidence that such worlds should be ubiquitous in the Galaxy.