Do you want to publish a course? Click here

Fluid Mechanics Explains Cosmology, Dark Matter, Dark Energy, and Life

329   0   0.0 ( 0 )
 Added by Carl H. Gibson
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of the interstellar medium by the Herschel, Planck etc. infrared satellites throw doubt on standard {Lambda}CDMHC cosmological processes to form gravitational structures. According to the Hydro-Gravitational-Dynamics (HGD) cosmology of Gibson (1996), and the quasar microlensing observations of Schild (1996), the dark matter of galaxies consists of Proto-Globular-star-Cluster (PGC) clumps of Earth-mass primordial gas planets in metastable equilibrium since PGCs began star production at 0.3 Myr by planet mergers. Dark energy and the accelerating expansion of the universe inferred from SuperNovae Ia are systematic dimming errors produced as frozen gas dark matter planets evaporate to form stars. Collisionless cold dark matter that clumps and hierarchically clusters does not exist. Clumps of PGCs began diffusion from the Milky Way Proto-Galaxy upon freezing at 14 Myr to give the Magellanic Clouds and the faint dwarf galaxies of the 10^22 m diameter baryonic dark matter Galaxy halo. The first stars persist as old globular star clusters (OGCs). Water oceans and the biological big bang occurred at 2-8 Myr. Life inevitably formed and evolved in the cosmological primordial organic soup provided by 10^80 big bang planets and their hot oceans as they gently merged to form larger binary planets and small binary stars.



rate research

Read More

223 - Carl H. Gibson 2012
The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating supernovae dimness, suggesting a remarkable change in the expansion rate of the Universe from a decrease since the big bang to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current standard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts superclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies and merge to form their stars. Dark energy is a systematic dimming error for Supernovae Ia caused by dark matter planets near hot white dwarf stars at the Chandrasekhar carbon limit. Evaporated planet atmospheres may or may not scatter light from the events depending on the line of sight.
Kination dominated quintessence models of dark energy have the intriguing feature that the relic abundance of thermal cold dark matter can be significantly enhanced compared to the predictions from standard cosmology. Previous treatments of such models do not include a realistic embedding of inflationary initial conditions. We remedy this situation by constructing a viable inflationary model in which the inflaton and quintessence field are the same scalar degree of freedom. Kination domination is achieved after inflation through a strong push or kick of the inflaton, and sufficient reheating can be achieved depending on model parameters. This allows us to explore both model-dependent and model-independent cosmological predictions of this scenario. We find that measurements of the B-mode CMB polarization can rule out this class of scenarios almost model independently. We also discuss other experimentally accessible signatures for this class of models.
129 - Kevin Cahill 2019
A quantum field theory has finite zero-point energy if the sum over all boson modes $b$ of the $n$th power of the boson mass $ m_b^n $ equals the sum over all fermion modes $f$ of the $n$th power of the fermion mass $ m_f^n $ for $n= 0$, 2, and 4. The zero-point energy of a theory that satisfies these three conditions with otherwise random masses is huge compared to the density of dark energy. But if in addition to satisfying these conditions, the sum of $m_b^4 log m_b/mu$ over all boson modes $b$ equals the sum of $ m_f^4 log m_f/mu $ over all fermion modes $f$, then the zero-point energy of the theory is zero. The value of the mass parameter $mu$ is irrelevant in view of the third condition ($n=4$). The particles of the standard model do not remotely obey any of these four conditions. But an inclusive theory that describes the particles of the standard model, the particles of dark matter, and all particles that have not yet been detected might satisfy all four conditions if pseudomasses are associated with the mean values in the vacuum of the divergences of the interactions of the inclusive model. Dark energy then would be the finite potential energy of the inclusive theory.
We suggest that the eventual gravitational repulsion between matter and antimatter may be a key for understanding of the nature of dark matter and dark energy. If there is gravitational repulsion, virtual particle-antiparticle pairs in the vacuum, may be considered as gravitational dipoles. We use a simple toy model to reveal a first indication that the gravitational polarization of such a vacuum, caused by baryonic matter in a Galaxy, may produce the same effect as supposed existence of dark matter. In addition, we argue that cancellation of gravitational charges in virtual particle-antiparticle pairs, may be a basis for a solution of the cosmological constant problem and identification of dark energy with vacuum energy. Hence, it may be that dark matter and dark energy are not new, unknown forms of matter-energy but an effect of complex interaction between quantum vacuum and known baryonic matter.
107 - Kenath Arun 2017
The nature of dark matter (DM) and dark energy (DE) which is supposed to constitute about 95% of the energy density of the universe is still a mystery. There is no shortage of ideas regarding the nature of both. While some candidates for DM are clearly ruled out, there is still a plethora of viable particles that fit the bill. In the context of DE, while current observations favour a cosmological constant picture, there are other competing models that are equally likely. This paper reviews the different possible candidates for DM including exotic candidates and their possible detection. This review also covers the different models for DE and the possibility of unified models for DM and DE. Keeping in mind the negative results in some of the ongoing DM detection experiments, here we also review the possible alternatives to both DM and DE (such as MOND and modifications of general relativity) and possible means of observationally distinguishing between the alternatives.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا