Do you want to publish a course? Click here

Leading-order hadronic contributions to a_{mu} and alpha_{QED} from N_f=2+1+1 twisted mass fermions

155   0   0.0 ( 0 )
 Added by Grit Hotzel
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We present the first four-flavour lattice calculation of the leading-order hadronic vacuum-polarisation contribution to the anomalous magnetic moment of the muon, a_{mu}^{hvp}, and the hadronic running of the QED coupling constant, Delta alpha_{QED}^{hvp} (Q^2). In the heavy sector a mixed-action setup is employed. The bare quark masses are determined from matching the K- and D-meson masses to their physical values. Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass by utilising a recently proposed improved method. We demonstrate that this method also works in the four-flavour case.



rate research

Read More

We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
250 - C. Alexandrou 2014
The masses of the low lying baryons are evaluated using a total of ten ensembles of dynamical twisted mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values. The light sea quarks correspond to pseudo scalar masses in the range of about 210~MeV to 430~MeV. We use the Iwasaki improved gluonic action at three values of the coupling constant corresponding to lattice spacing $a=0.094$~fm, 0.082~fm and 0.065~fm determined from the nucleon mass. We check for both finite volume and cut-off effects on the baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. We performed a chiral extrapolation of the forty baryon masses using SU(2) $chi$PT. After taking the continuum limit and extrapolating to the physical pion mass our results are in good agreement with experiment. We provide predictions for the mass of the doubly charmed $Xi_{cc}^*$, as well as of the doubly and triply charmed $Omega$s that have not yet been determined experimentally.
We evaluate the neutron electric dipole moment $vert vec{d}_Nvert$ using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using $N_f{=}2{+}1{+}1$ twisted mass fermions at one value of the lattice spacing of $a simeq 0.082 {rm fm}$ and a light quark mass corresponding to $m_{pi} simeq 373 {rm MeV}$. Our approach to extract the neutron electric dipole moment is based on the calculation of the $CP$-odd electromagnetic form factor $F_3(Q^2)$ for small values of the vacuum angle $theta$ in the limit of zero Euclidean momentum transfer $Q^2$. The limit $Q^2 to 0$ is realized either by adopting a parameterization of the momentum dependence of $F_3(Q^2)$ and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of $F_3(Q^2)$. The computation in the presence of a $CP$-violating term requires the evaluation of the topological charge ${cal Q}$. This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of $vert vec{d}_Nvert=0.045(6)(1) bar{theta} e cdot {rm fm}$ for the ensemble with $m_pi=373$ MeV considered.
We calculate the leading order hadronic contribution to the muon anomalous magnetic moment using twisted mass lattice QCD. The pion masses range from 330 MeV to 650 MeV. We use two lattice spacings, a=0.079 fm and 0.063 fm, to study lattice artifacts. Finite-size effects are studied for two values of the pion mass, and we calculate the disconnected contributions for four ensembles. Particular attention is paid to the dominant contributions of the vector mesons, both phenomenologically and from our lattice calculation.
119 - Dru B. Renner , Xu Feng 2009
We calculate the vacuum polarization tensor for pion masses from 480 MeV to 270 MeV using dynamical twisted mass fermions at a lattice spacing of 0.086 fm. We analyze the form of the polarization tensor on the lattice using the symmetries of twisted QCD and we study both finite size effects and lattice artifacts at a pion mass of 310 MeV. Results for the lowest order hadronic contribution to g-2 are presented and the impact of systematic errors is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا