Do you want to publish a course? Click here

Leptonic Flavor Violating Higgs to mu + tau Decay in Supersymmetry without R Parity

343   0   0.0 ( 0 )
 Added by Yifan Cheng
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We summarized our report on leptonic flavor violating Higgs decay into mu + tau under the scheme of a generic supersymmetric standard model without R parity. With known experimental constraints imposed, important combinations of R-parity violating parameters which can give notable branching ratios are listed.



rate research

Read More

In this letter, we report on lepton flavor violating Higgs decay into mu+tau in the framework of the generic supersymmetric standard model without R parity and list interesting combinations of R-parity violating parameters. We impose other known experimental constraints on the parameters of the model and show our results from the R-parity violating parameters. In our analysis, the branching ratio of Higgs to mu+tau can exceed 10^{-5} within admissible parameter space.
In this paper we examine thoroughly the Higgs boson to mu tau decay via processes involving R parity violating couplings. By means of full one-loop diagrammatic calculations, we found that even if known experimental constraints, particularly including the stringent sub-eV neutrino mass bounds, give strong restrictions on some of the R parity violating parameters, the branching ratio could still achieve notable value in the admissible parameter space. Hence, the flavor violating leptonic decay is of interest to future experiments. We present here key results of our analysis. Based on the analysis, we give some comments on h -> e mu and h -> e tau also.
R-parity conservation is an {it ad hoc} assumption in the most popular version of the supersymmetric standard model. Most studies of models which do allow for R-parity violation have been restricted to various limiting scenarios. The single-VEV parametrization used in this paper provides a workable framework to analyze phenomenology of the most general theory of SUSY without R-parity. We perform a comprehensive study of leptonic phenomenology at tree-level. Experimental constraints on various processes are studied individually and then combined to yield regions of admissible parameter space. In particular, we show that large R-parity violating bilinear couplings are not ruled out, especially for large $tanbeta$.
The size of the branching ratios for the $tau to mu gamma$ and $tau to mu gamma gamma$ decays induced by a lepton flavor violating Higgs interaction $Htau mu$ is studied in the frame of effective field theories. The best constraint on the $Htau mu$ vertex, derived from the know measurement on the muon anomalous magnetic moment, is used to impose the upper bounds $Br(tau to mu gamma)<2.5times 10^{-10}$ and $Br(tau to mu gamma gamma)<2.3times 10^{-12}$, which are more stringent than current experimental limits on this class of transitions.
In this paper, the lepton flavor violating $tau^- to mu^-PP (PP=K^+K^-,K^0bar{K}^0,pi^+pi^-,pi^0pi^0)$ decays are studied in the framework of the two Higgs doublet model(2HDM) III. We calculate these decays branching ratios and get the bounds of model parameter $|lambda_{taumu}|$ from the experimental upper limits. Our results show that, the neutral Higgs bosons have tree-level contributions to these decays. Among these decays, the $tau^- to mu^- K^+K^-$ decay is most sensitive to $|lambda_{taumu}|$. In the existing parameters space, these decays could reach the measure capability of B factory. These processes can provide some valuable information to future research and furthermore present the reliable evidence to test the 2HDM III model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا