Do you want to publish a course? Click here

Sylvester-Gallai type theorems for approximate collinearity

106   0   0.0 ( 0 )
 Added by Shubhangi Saraf
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

We study questions in incidence geometry where the precise position of points is `blurry (e.g. due to noise, inaccuracy or error). Thus lines are replaced by narrow tubes, and more generally affine subspaces are replaced by their small neighborhood. We show that the presence of a sufficiently large number of approximately collinear triples in a set of points in d dimensional complex space implies that the points are close to a low dimensional affine subspace. This can be viewed as a stable variant of the Sylvester-Gallai theorem and its extensions. Building on the recently found connection between Sylvester-Gallai type theorems and complex Locally Correctable Codes (LCCs), we define the new notion of stable LCCs, in which the (local) correction procedure can also handle small perturbations in the euclidean metric. We prove that such stable codes with constant query complexity do not exist. No impossibility results were known in any such local setting for more than 2 queries.



rate research

Read More

92 - Zeev Dvir , Guangda Hu 2014
In this work we study arrangements of $k$-dimensional subspaces $V_1,ldots,V_n subset mathbb{C}^ell$. Our main result shows that, if every pair $V_{a},V_b$ of subspaces is contained in a dependent triple (a triple $V_{a},V_b,V_c$ contained in a $2k$-dimensional space), then the entire arrangement must be contained in a subspace whose dimension depends only on $k$ (and not on $n$). The theorem holds under the assumption that $V_a cap V_b = {0}$ for every pair (otherwise it is false). This generalizes the Sylvester-Gallai theorem (or Kellys theorem for complex numbers), which proves the $k=1$ case. Our proof also handles arrangements in which we have many pairs (instead of all) appearing in dependent triples, generalizing the quantitative results of Barak et. al. [BDWY-pnas]. One of the main ingredients in the proof is a strengthening of a Theorem of Barthe [Bar98] (from the $k=1$ to $k>1$ case) proving the existence of a linear map that makes the angles between pairs of subspaces large on average. Such a mapping can be found, unless there is an obstruction in the form of a low dimensional subspace intersecting many of the spaces in the arrangement (in which case one can use a different argument to prove the main theorem).
A (q,k,t)-design matrix is an m x n matrix whose pattern of zeros/non-zeros satisfies the following design-like condition: each row has at most q non-zeros, each column has at least k non-zeros and the supports of every two columns intersect in at most t rows. We prove that the rank of any (q,k,t)-design matrix over a field of characteristic zero (or sufficiently large finite characteristic) is at least n - (qtn/2k)^2 . Using this result we derive the following applications: (1) Impossibility results for 2-query LCCs over the complex numbers: A 2-query locally correctable code (LCC) is an error correcting code in which every codeword coordinate can be recovered, probabilistically, by reading at most two other code positions. Such codes have numerous applications and constructions (with exponential encoding length) are known over finite fields of small characteristic. We show that infinite families of such linear 2-query LCCs do not exist over the complex numbers. (2) Generalization of results in combinatorial geometry: We prove a quantitative analog of the Sylvester-Gallai theorem: Let $v_1,...,v_m$ be a set of points in $C^d$ such that for every $i in [m]$ there exists at least $delta m$ values of $j in [m]$ such that the line through $v_i,v_j$ contains a third point in the set. We show that the dimension of ${v_1,...,v_m }$ is at most $O(1/delta^2)$. Our results generalize to the high dimensional case (replacing lines with planes, etc.) and to the case where the points are colored (as in the Motzkin-Rabin Theorem).
Given graphs $G$ and $H$ and a positive integer $k$, the emph{Gallai-Ramsey number}, denoted by $gr_{k}(G : H)$ is defined to be the minimum integer $n$ such that every coloring of $K_{n}$ using at most $k$ colors will contain either a rainbow copy of $G$ or a monochromatic copy of $H$. We consider this question in the cases where $G in {P_{4}, P_{5}}$. In the case where $G = P_{4}$, we completely solve the Gallai-Ramsey question by reducing to the $2$-color Ramsey numbers. In the case where $G = P_{5}$, we conjecture that the problem reduces to the $3$-color Ramsey numbers and provide several results in support of this conjecture.
Given a graph $G$ and a positive integer $k$, the emph{Gallai-Ramsey number} is defined to be the minimum number of vertices $n$ such that any $k$-edge coloring of $K_n$ contains either a rainbow (all different colored) copy of $G$ or a monochromatic copy of $G$. In this paper, we obtain general upper and lower bounds on the Gallai-Ramsey numbers for double stars $S(n,m)$, where $S(n,m)$ is the graph obtained from the union of two stars $K_{1,n}$ and $K_{1,m}$ by adding an edge between their centers. We also provide the sharp result in some cases.
The classical Kruskal-Katona theorem gives a tight upper bound for the size of an $r$-uniform hypergraph $mathcal{H}$ as a function of the size of its shadow. Its stability version was obtained by Keevash who proved that if the size of $mathcal{H}$ is close to the maximum, then $mathcal{H}$ is structurally close to a complete $r$-uniform hypergraph. We prove similar stability results for two classes of hypergraphs whose extremal properties have been investigated by many researchers: the cancellative hypergraphs and hypergraphs without expansion of cliques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا