Do you want to publish a course? Click here

How Does the Surface Density and Size of Disk Galaxies Measured in Hydrodynamic Simulations Correlate with the Halo Spin Parameter?

196   0   0.0 ( 0 )
 Added by Ji-hoon Kim
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Late-type low surface brightness galaxies (LSBs) are faint disk galaxies with central maximum stellar surface densities below 100 Msun/pc^2. The currently favored scenario for their origin is that LSBs have formed in fast-rotating halos with large angular momenta. We present the first numerical evidence for this scenario using a suite of self-consistent hydrodynamic simulations of a 2.3e11 Msun galactic halo, in which we investigate the correlations between the disk stellar/gas surface densities and the spin parameter of its host halo. A clear anti-correlation between the surface densities and the halo spin parameter, lambda, is found. That is, as the halo spin parameter increases, the disk cutoff radius at which the stellar surface density drops below 0.1 Msun/pc^2 monotonically increases, while the average stellar surface density of the disk within that radius decreases. The ratio of the average stellar surface density for the case of lambda=0.03 to that for the case of lambda=0.14 reaches more than 15. We demonstrate that the result is robust against variations in the baryon fraction, confirming that the angular momentum of the host halo is an important driver for the formation of LSBs.



rate research

Read More

150 - Peng Wang 2018
The correlation between the spins of dark matter halos and the large-scale structure (LSS) has been studied in great detail over a large redshift range, while investigations of galaxies are still incomplete. Motivated by this point, we use the state-of-the-art hydrodynamic simulation, Illustris-1, to investigate mainly the spin--LSS correlation of galaxies at redshift of $z=0$. We mainly find that the spins of low-mass, blue, oblate galaxies are preferentially aligned with the slowest collapsing direction ($e_3$) of the large-scale tidal field, while massive, red, prolate galaxy spins tend to be perpendicular to $e_3$. The transition from a parallel to a perpendicular trend occurs at $sim10^{9.4} M_{odot}/h$ in the stellar mass, $sim0.62$ in the g-r color, and $sim0.4$ in triaxiality. The transition stellar mass decreases with increasing redshifts. The alignment was found to be primarily correlated with the galaxy stellar mass. Our results are consistent with previous studies both in N-body simulations and observations. Our study also fills the vacancy in the study of the galaxy spin--LSS correlation at $z=0$ using hydrodynamical simulations and also provides important insight to understand the formation and evolution of galaxy angular momentum.
Star-forming galaxies display a close relation among stellar mass, metallicity and star-formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41,338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new four-dimensional (4D) fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50% of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass. AKARI is expected to play an important role in shedding light on the infrared properties of the new 4D FMR.
88 - Fangzhou Jiang 2018
The similarity between the distributions of spins for galaxies ($lambda_{rm g}$) and for dark-matter haloes ($lambda_{rm h}$), indicated both by simulations and observations, is naively interpreted as a one-to-one correlation between the spins of a galaxy and its host halo. This is used to predict galaxy sizes in semi-analytic models via $R_{rm e}simeqlambda_{rm h} R_{rm v}$, with $R_{rm e}$ the half-mass radius of the galaxy and $R_{rm v}$ the halo radius. Utilizing two different suites of zoom-in cosmological simulations, we find that $lambda_{rm g}$ and $lambda_{rm h}$ are in fact only barely correlated, especially at $zgeq 1$. A general smearing of this correlation is expected based on the different spin histories, where the more recently accreted baryons through streams gain and then lose significant angular momentum compared to the gradually accumulated dark matter. Expecting the spins of baryons and dark matter to be correlated at accretion into $R_{rm v}$, the null correlation at the end reflects an anti-correlation between $lambda_{rm g}/lambda_{rm h}$ and $lambda_{rm h}$, which can partly arise from mergers and a compact star-forming phase that many galaxies undergo. On the other hand, the halo and galaxy spin vectors tend to be aligned, with a median $costheta=0.6$-0.7 between galaxy and halo, consistent with instreaming within a preferred plane. The galaxy spin is better correlated with the spin of the inner halo, but this largely reflects the effect of the baryons on the halo. Following the null spin correlation, $lambda_{rm h}$ is not a useful proxy for $R_{rm e}$. While our simulations reproduce a general relation of the sort $R_{rm e}=AR_{rm vir}$, in agreement with observational estimates, the relation becomes tighter with $A=0.02(c/10)^{-0.7}$, where $c$ is the halo concentration, which in turn introduces a dependence on mass and redshift.
SubHalo Abundance Matching (SHAM) assumes that one (sub)halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub)halo such as its luminosity or stellar mass. This assumption implies that the dependence of Galaxy Luminosity Functions (GLFs) and the Galaxy Stellar Mass Function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from an SDSS sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g-r color for all galaxies and central galaxies, although it better reproduces the color dependence on environmental density of satellite galaxies.
Using a new, high-resolution cosmological hydrodynamic simulation of a Milky Way-type (MW-type) galaxy, we explore how a merger-rich assembly history affects the mass budget of the central supermassive black hole (SMBH). We examine a MW-mass halo at the present epoch whose evolution is characterized by several major mergers to isolate the importance of merger history on black hole accretion. This study is an extension of Bellovary et. al. 2013, which analyzed the accretion of high mass, high redshift galaxies and their central black holes, and found that the gas content of the central black hole reflects what is accreted by the host galaxy halo. In this study, we find that a merger-rich galaxy will have a central SMBH preferentially fed by merger gas. Moreover, we find that nearly 30$%$ of the accreted mass budget of the SMBH enters the galaxy through the two major mergers in its history, which may account for the increase of merger-gas fueling the SMBH. Through an investigation of the angular momentum of the gas entering the host and its SMBH, we determine that merger gas enters the galaxy with lower angular momentum compared to smooth accretion, partially accounting for the preferential fueling witnessed in the SMBH. In addition, the presence of mergers, particularly major mergers, also helps funnel low angular momentum gas more readily to the center of the galaxy. Our results imply that galaxy mergers play an important role in feeding the SMBH in MW-type galaxies with merger-rich histories. Our results imply that galaxy mergers play an important role in feeding the SMBH in MW-type galaxies with merger-rich histories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا