Do you want to publish a course? Click here

Rapid Mass Segregation in Massive Star Clusters

199   0   0.0 ( 0 )
 Added by Steve McMillan
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several dynamical scenarios have been proposed that can lead to prompt mass segregation on the crossing time scale of a young cluster. They generally rely on cool and/or clumpy initial conditions, and are most relevant to small systems. As a counterpoint, we present a novel dynamical mechanism that can operate in relatively large, homogeneous, cool or cold systems. This mechanism may be important in understanding the assembly of large mass-segregated clusters from smaller clumps.



rate research

Read More

A promising mechanism to form intermediate-mass black holes (IMBHs) is the runaway merger in dense star clusters, where main-sequence stars collide and form a very massive star (VMS), which then collapses to a black hole. In this paper we study the effects of primordial mass segregation and the importance of the stellar initial mass function (IMF) on the runaway growth of VMSs using a dynamical Monte Carlo code for N-body systems with N as high as 10^6 stars. Our code now includes an explicit treatment of all stellar collisions. We place special emphasis on the possibility of top-heavy IMFs, as observed in some very young massive clusters. We find that both primordial mass segregation and the shape of the IMF affect the rate of core collapse of star clusters and thus the time of the runaway. When we include primordial mass segregation we generally see a decrease in core collapse time (tcc). Moreover, primordial mass segregation increases the average mass in the core, thus reducing the central relaxation time, which also decreases tcc. The final mass of the VMS formed is always close to sim 10^-3 of the total cluster mass, in agreement with the previous studies and is reminiscent of the observed correlation between the central black hole mass and the bulge mass of the galaxies. As the degree of primordial mass segregation is increased, the mass of the VMS increases at most by a factor of 3. Flatter IMFs generally increase the average mass in the whole cluster, which increases tcc. For the range of IMFs investigated in this paper, this increase in tcc is to some degree balanced by stellar collisions, which accelerate core collapse. Thus there is no significant change in tcc for the somewhat flatter global IMFs observed in very young massive clusters.
174 - C. Olczak , R. Spurzem , 2011
Investigations of mass segregation are of vital interest for the understanding of the formation and dynamical evolution of stellar systems on a wide range of spatial scales. Our method is based on the minimum spanning tree (MST) that serves as a geometry-independent measure of concentration. Compared to previous such approaches we obtain a significant refinement by using the geometrical mean as an intermediate-pass. It allows the detection of mass segregation with much higher confidence and for much lower degrees of mass segregation than other approaches. The method shows in particular very clear signatures even when applied to small subsets of the entire population. We confirm with high significance strong mass segregation of the five most massive stars in the Orion Nebula Cluster (ONC). Our method is the most sensitive general measure of mass segregation so far and provides robust results for both data from simulations and observations. As such it is ideally suited for tracking mass segregation in young star clusters and to investigate the long standing paradigm of primordial mass segregation by comparison of simulations and observations.
103 - Vaclav Pavlik 2020
Observations of young star-forming regions suggest that star clusters are born completely mass segregated. These initial conditions are, however, gradually lost as the star cluster evolves dynamically. For star clusters with single stars only and a canonical initial mass function, it has been suggested that traces of these initial conditions vanish at a time $tau_mathrm{v}$ between 3 and $3.5,t_mathrm{rh}$ (initial half-mass relaxation times). Since a significant fraction of stars are observed in binary systems and it is widely accepted that most stars are born in binary systems, we aim to investigate what role a primordial binary population (even up to $100,%$ binaries) plays in the loss of primordial mass segregation of young star clusters. We used numerical $N$-body models similar in size to the Orion Nebula Cluster (ONC) -- a representative of young open clusters -- integrated over several relaxation times to draw conclusions on the evolution of its mass segregation. We also compared our models to the observed ONC. We found that $tau_mathrm{v}$ depends on the binary star fraction and the distribution of initial binary parameters that include a semi-major axis, eccentricity, and mass ratio. For instance, in the models with $50,%$ binaries, we find $tau_mathrm{v} = (2.7 pm 0.8),t_mathrm{rh}$, while for $100,%$ binary fraction, we find a lower value $tau_mathrm{v} = (2.1 pm 0.6),t_mathrm{rh}$. We also conclude that the initially completely mass segregated clusters, even with binaries, are more compatible with the present-day ONC than the non-segregated ones.
69 - R. Dominguez 2017
We investigate the evolution of mass segregation in initially sub-structured young embedded star clusters with two different background potentials mimicking the gas. Our clusters are initially in virial or sub-virial global states and have different initial distributions for the most massive stars: randomly placed, initially mass segregated or even inverse segregation. By means of N-body simulation we follow their evolution for 5 Myr. We measure the mass segregation using the minimum spanning tree method Lambda_MSR and an equivalent restricted method. Despite this variety of different initial conditions, we find that our stellar distributions almost always settle very fast into a mass segregated and more spherical configuration, suggesting that once we see a spherical or nearly spherical embedded star cluster, we can be sure it is mass segregated no matter what the real initial conditions were. We, furthermore, report under which circumstances this process can be more rapid or delayed, respectively.
The relative average minimum projected separations of star clusters in the Legacy ExtraGalactic UV Survey (LEGUS) and in tidal dwarfs around the interacting galaxy NGC 5291 are determined as a function of cluster mass to look for cluster-cluster mass segregation. Class 2 and 3 LEGUS clusters, which have a more irregular internal structure than the compact and symmetric class 1 clusters, are found to be mass segregated in low mass galaxies, which means that the more massive clusters are systematically bunched together compared to the lower mass clusters. This mass segregation is not present in high-mass galaxies nor for class 1 clusters. We consider possible causes for this segregation including differences in cluster formation and scattering in the shallow gravitational potentials of low mass galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا