Do you want to publish a course? Click here

The Asteroid Catalog Using AKARI IRC Slow-Scan Observations

143   0   0.0 ( 0 )
 Added by Sunao Hasegawa
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an asteroidal catalog from the mid-infrared wavelength region using the slow-scan observation mode obtained by the Infrared Camera (IRC) on-board the Japanese infrared satellite AKARI. An archive of IRC slow-scan observations comprising about 1000 images was used to search for serendipitous encounters of known asteroids. We have determined the geometric albedos and diameters for 88 main-belt asteroids, including two asteroids in the Hilda region, and compared these, where possible, with previously published values. Approximately one-third of the acquired data reflects new asteroidal information. Some bodies classified as C or D-type with high albedo were also identified in the catalog.



rate research

Read More

We present the characterization and calibration of the slow-scan observation mode of the Infrared Camera (IRC) on-board AKARI. The IRC slow-scan observations were operated at the S9W (9 $mu$m) and L18W (18 $mu$m) bands. We have developed a toolkit for data reduction of the IRC slow-scan observations. We introduced a self-pointing reconstruction method to improve the positional accuracy to as good as 1. The sizes of the point spread functions were derived to be $sim6$ at the S9W band and $sim7$ at the L18W bands in full width at half maximum. The flux calibrations were achieved with the observations of 3 and 4 infrared standard stars at the S9W and L18W bands, respectively. The flux uncertainties are estimated to be better than 20% from comparisons with the AKARI IRC PSC and the WISE preliminary catalog.
In the 1-2.5 micron range, spectroscopic observations are made on the AcuA-spec asteroids, whose spectra were obtained in a continuous covered mode between 2.5-5.0 micron by AKARI. Based on the Bus-DeMeo taxonomy (DeMeo et al. 2009, Icarus, 202, 160), all the AcuA-spec asteroids are classified, using the published and our observational data. Additionally, taking advantage of the Bus-DeMeo taxonomy characteristics, we constrain the characteristic each spectral type by combining the taxonomy results with the other physical observational data from colorimetry, polarimetry, radar, and radiometry. As a result, it is suggested that certain C-, Cb-, B-type, dark X-, and D-complex asteroids have spectral properties compatible with those of anhydrous interplanetary dust particles with tiny bright material, such as water ice. This supports the proposal regarding the C-complex asteroids (Vernazza et al. 2015, ApJ, 806, 204; 2017, AJ, 153, 72). A combination of the Bus-DeMeo taxonomy for AcuA-spec asteroids and the presumptions with other physical clues such as the polarimetric inversion angle, radar albedo, and mid-infrared spectroscopic spectra will be beneficial for surface material constraints, from the AcuA-spec asteroid observations.
We present the results of an unbiased asteroid survey in the mid-infrared wavelength with the Infrared Camera (IRC) onboard the Japanese infrared satellite AKARI. About 20% of the point source events recorded in the AKARI All-Sky Survey observations are not used for the IRC Point Source Catalog (IRC-PSC) in its production process because of the lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, remain in these residual events. We identify asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculate the size and albedo based on the Standard Thermal Model. Finally we have a brand-new catalog of asteroids, named the Asteroid Catalog Using Akari (AcuA), which contains 5,120 objects, about twice as many as the IRAS asteroid catalog. The catalog objects comprise 4,953 main belt asteroids, 58 near Earth asteroids, and 109 Jovian Trojan asteroids. The catalog will be publicly available via the Internet.
Knowledge of water in the solar system is important for understanding of a wide range of evolutionary processes and the thermal history of the solar system. To explore the existence of water in the solar system, it is indispensable to investigate hydrated minerals and/or water ice on asteroids. These water-related materials show absorption features in the 3-$micron$ band (wavelengths from 2.7 to 3.1 $micron$). We conducted a spectroscopic survey of asteroids in the 3-$micron$ band using the Infrared Camera (IRC) on board the Japanese infrared satellite AKARI. In the warm mission period of AKARI, 147 pointed observations were performed for 66 asteroids in the grism mode for wavelengths from 2.5 to 5 $micron$. According to these observations, most C-complex asteroids have clear absorption features ($> 10%$ with respect to the continuum) related to hydrated minerals at a peak wavelength of approximately 2.75 $micron$, while S-complex asteroids have no significant feature in this wavelength range. The present data are released to the public as the Asteroid Catalog using AKARI Spectroscopic Observations (AcuA-spec).
Context. Little is known about the properties of the warm (Tdust >~ 150 K) debris disk material located close to the central star, which has a more direct link to the formation of terrestrial planets than the low temperature debris dust that has been detected to date. Aims. To discover new warm debris disk candidates that show large 18 micron excess and estimate the fraction of stars with excess based on the AKARI/IRC Mid-Infrared All-Sky Survey data. Methods. We have searched for point sources detected in the AKARI/IRC All-Sky Survey, which show a positional match with A-M dwarf stars in the Tycho-2 Spectral Type Catalogue and exhibit excess emission at 18 micron compared to that expected from the Ks magnitude in the 2MASS catalogue. Results. We find 24 warm debris candidates including 8 new candidates among A-K stars. The apparent debris disk frequency is estimated to be 2.8 +/- 0.6%. We also find that A stars and solar-type FGK stars have different characteristics of the inner component of the identified debris disk candidates --- while debris disks around A stars are cooler and consistent with steady-state evolutionary model of debris disks, those around FGK stars tend to be warmer and cannot be explained by the steady-state model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا