Stability of Gorenstein flat categories with respect to a semidualizing module


Abstract in English

In this paper, we first introduce $mathcal {W}_F$-Gorenstein modules to establish the following Foxby equivalence: $xymatrix@C=80pt{mathcal {G}(mathcal {F})cap mathcal {A}_C(R) ar@<0.5ex>[r]^{Cotimes_R-} & mathcal {G}(mathcal {W}_F) ar@<0.5ex>[l]^{textrm{Hom}_R(C,-)}} $ where $mathcal {G}(mathcal {F})$, $mathcal {A}_C(R) $ and $mathcal {G}(mathcal {W}_F)$ denote the class of Gorenstein flat modules, the Auslander class and the class of $mathcal {W}_F$-Gorenstein modules respectively. Then, we investigate two-degree $mathcal {W}_F$-Gorenstein modules. An $R$-module $M$ is said to be two-degree $mathcal {W}_F$-Gorenstein if there exists an exact sequence $mathbb{G}_bullet=indent ...longrightarrow G_1longrightarrow G_0longrightarrow G^0longrightarrow G^1longrightarrow...$ in $mathcal {G}(mathcal {W}_F)$ such that $M cong$ $im(G_0rightarrow G^0) $ and that $mathbb{G}_bullet$ is Hom$_R(mathcal {G}(mathcal {W}_F),-)$ and $mathcal {G}(mathcal {W}_F)^+otimes_R-$ exact. We show that two notions of the two-degree $mathcal {W}_F$-Gorenstein and the $mathcal {W}_F$-Gorenstein modules coincide when R is a commutative GF-closed ring.

Download