Do you want to publish a course? Click here

Mapping water in protostellar outflows with Herschel: PACS and HIFI observations of L1448-C

166   0   0.0 ( 0 )
 Added by Brunella Nisini
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate on the spatial and velocity distribution of H2O along the L1448 outflow, its relationship with other tracers, and its abundance variations, using maps of the o-H2O 1_{10}-1_{01} and 2_{12}-1_{01} transitions taken with the Herschel-HIFI and PACS instruments, respectively. Water emission appears clumpy, with individual peaks corresponding to shock spots along the outflow. The bulk of the 557 GHz line is confined to radial velocities in the range pm 10-50 km/s but extended emission associated with the L1448-C extreme high velocity (EHV) jet is also detected. The H2O 1_{10}-1_{01}/CO(3-2) ratio shows strong variations as a function of velocity that likely reflect different and changing physical conditions in the gas responsible for the emissions from the two species. In the EHV jet, a low H2O/SiO abundance ratio is inferred, that could indicate molecular formation from dust free gas directly ejected from the proto-stellar wind. We derive averaged Tkin and n(H2) values of about 300-500 K and 5 10^6 cm-3 respectively, while a water abundance with respect to H2 of the order of 0.5-1 10^{-6} along the outflow is estimated. The fairly constant conditions found all along the outflow implies that evolutionary effects on the timescales of outflow propagation do not play a major role in the H2O chemistry. The results of our analysis show that the bulk of the observed H2O lines comes from post-shocked regions where the gas, after being heated to high temperatures, has been already cooled down to a few hundred K. The relatively low derived abundances, however, call for some mechanism to diminish the H2O gas in the post-shock region. Among the possible scenarios, we favor H2O photodissociation, which requires the superposition of a low velocity non-dissociative shock with a fast dissociative shock able to produce a FUV field of sufficient strength.



rate research

Read More

In the framework of the Water in Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This paper reports the first results of this program, presenting a PACS map of the o-H2O 179 um transition obtained toward the young outflow L1157. The 179 um map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the water abundance and total cooling. Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 um emission is spatially correlated with emission from H2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 um intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10^-4. This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total water cooling is ~10^-1 Lo, about 40% of the cooling due to H2 and 23% of the total energy released in shocks along the L1157 outflow.
We derive the dense core structure and the water abundance in four massive star-forming regions which may help understand the earliest stages of massive star formation. We present Herschel-HIFI observations of the para-H2O 1_11-0_00 and 2_02-1_11 and the para-H2-18O 1_11-0_00 transitions. The envelope contribution to the line profiles is separated from contributions by outflows and foreground clouds. The envelope contribution is modelled using Monte-Carlo radiative transfer codes for dust and molecular lines (MC3D and RATRAN), with the water abundance and the turbulent velocity width as free parameters. While the outflows are mostly seen in emission in high-J lines, envelopes are seen in absorption in ground-state lines, which are almost saturated. The derived water abundances range from 5E-10 to 4E-8 in the outer envelopes. We detect cold clouds surrounding the protostar envelope, thanks to the very high quality of the Herschel-HIFI data and the unique ability of water to probe them. Several foreground clouds are also detected along the line of sight. The low H2O abundances in massive dense cores are in accordance with the expectation that high densities and low temperatures lead to freeze-out of water on dust grains. The spread in abundance values is not clearly linked to physical properties of the sources.
Water probes the dynamics in young stellar objects (YSOs) effectively, especially shocks in molecular outflows. It is a key molecule for exploring whether the physical properties of low-mass protostars can be extrapolated to massive YSOs. As part of the WISH key programme, we investigate the dynamics and the excitation conditions of shocks along the outflow cavity wall as function of source luminosity. Velocity-resolved Herschel-HIFI spectra of the H2O 988, 752, 1097 GHz and 12CO J=10-9, 16-15 lines were analysed for 52 YSOs with bolometric luminosities (L_bol) ranging from <1 to >10^5 L_sun. The profiles of the H2O lines are similar, indicating that they probe the same gas. We see two main Gaussian emission components in all YSOs: a broad component associated with non-dissociative shocks in the outflow cavity wall (cavity shocks) and a narrow component associated with quiescent envelope material. More than 60% of the total integrated intensity of the H2O lines (L_H2O) comes from the cavity shock component. The H2O line widths are similar for all YSOs, whereas those of 12CO 10-9 increase slightly with L_bol. The excitation analysis of the cavity shock component, performed with the non-LTE radiative transfer code RADEX, shows stronger 752 GHz emission for high-mass YSOs, likely due to pumping by an infrared radiation field. As previously found for CO, a strong correlation with slope unity is measured between log(L_H2O) and log(L_bol), which can be extrapolated to extragalactic sources. We conclude that the broad component of H2O and high-J CO lines originate in shocks in the outflow cavity walls for all YSOs, whereas lower-J CO transitions mostly trace entrained outflow gas. The higher UV field and turbulent motions in high-mass objects compared to their low-mass counterparts may explain the slightly different kinematical properties of 12CO 10-9 and H2O lines from low- to high-mass YSOs.
Context: Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance in various parts of the protostar. Method: We present textit{Herschel} HIFI spectra of multiple water-transitions towards 29 nearby Class 0/I protostars as part of the WISH Survey. These are decomposed into different Gaussian components, with each related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then constrain the excitation conditions present in the two outflow-related components. Results: Water emission is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H$_{2}$ densities of order 10$^{5}-$10$^{8}$,cm$^{-3}$ and H$_{2}$O column densities of order 10$^{16}-$10$^{18}$,cm$^{-2}$. H$_{2}$O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10-200,AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1-30,AU. Conclusions: Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. Class I sources have similar excitation conditions to Class 0 sources, but generally smaller line-widths and emitting region sizes. We suggest that it is the velocity of the wind driving the outflow, rather than the decrease in envelope density or mass, that is the cause of the decrease in H$_{2}$O intensity between Class 0 and I.
As part of the WISH (Water In Star-forming regions with Herschel) key project, we report on the observations of several ortho- and para-H2O lines performed with the HIFI instrument towards two bright shock spots (R4 and B2) along the outflow driven by the L1448 low-mass proto-stellar system, located in the Perseus cloud. These data are used to identify the physical conditions giving rise to the H2O emission and infer any dependence with velocity. These observations provide evidence that the observed water lines probe a warm (T_kin~400-600 K) and very dense (n 10^6 - 10^7 cm^-3) gas, not traced by other molecules, such as low-J CO and SiO, but rather traced by mid-IR H2 emission. In particular, H2O shows strong differences with SiO in the excitation conditions and in the line profiles in the two observed shocked positions, pointing to chemical variations across the various velocity regimes and chemical evolution in the different shock spots. Physical and kinematical differences can be seen at the two shocked positions. At the R4 position, two velocity components with different excitation can be distinguished, with the component at higher velocity (R4-HV) being less extended and less dense than the low velocity component (R4-LV). H2O column densities of about 2 10^13 and 4 10^14 cm^-2 have been derived for the R4-LV and the R4-HV components, respectively. The conditions inferred for the B2 position are similar to those of the R4-HV component, with H2O column density in the range 10^14 - 5 10^14 cm^-2, corresponding to H2O/H2 abundances in the range 0.5 - 1 10^-5. The observed line ratios and the derived physical conditions seem to be more consistent with excitation in a low velocity J-type shock with large compression rather than in a stationary C-shock, although none of these stationary models seems able to reproduce all the characteristics of the observed emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا