No Arabic abstract
Recent progress on Baade-Wesselink (BW)-type techniques to determine the distances to classical Cepheids is reviewed. Particular emphasis is placed on the near-infrared surface-brightness (IRSB) version of the BW method. Its most recent calibration is described and shown to be capable of yielding individual Cepheid distances accurate to 6%, including systematic uncertainties. Cepheid distances from the IRSB method are compared to those determined from open cluster zero-age main-sequence fitting for Cepheids located in Galactic open clusters, yielding excellent agreement between the IRSB and cluster Cepheid distance scales. Results for the Cepheid period-luminosity (PL) relation in near-infrared and optical bands based on IRSB distances and the question of the universality of the Cepheid PL relation are discussed. Results from other implementations of the BW method are compared to the IRSB distance scale and possible reasons for discrepancies are identified.
We provided accurate estimates of distances, radii and iron abundances for four metal-rich Cepheids, namely V340 Ara, UZ Sct, AV Sgr and VY Sgr. The main aim of this investigation is to constrain their pulsation properties and their location across the Galactic inner disk. We adopted new accurate NIR (J,H,K) light curves and new radial velocity measurements for the target Cepheids to determinate their distances and radii using the Baade-Wesselink technique. In particular, we adopted the most recent calibration of the IR surface brightness relation and of the projection factor. Moreover, we also provided accurate measurements of the iron abundance of the target Cepheids. Current distance estimates agree within one sigma with similar distances based either on empirical or on theoretical NIR Period-Luminosity relations. However, the uncertainties of the Baade-Wesselink distances are on average a factor of 3-4 smaller when compared with errors affecting other distance determinations. Mean Baade-Wesselink radii also agree at one sigma level with Cepheid radii based either on empirical or on theoretical Period-Radius relations. Iron abundances are, within one sigma, similar to the iron contents provided by Andrievsky and collaborators, thus confirming the super metal-rich nature of the target Cepheids. We also found that the luminosity amplitudes of classical Cepheids, at odds with RR Lyrae stars, do not show a clear correlation with the metal-content. This circumstantial evidence appears to be the consequence of the Hertzsprung progression together with the dependence of the topology of the instability strip on metallicity, evolutionary effects and binaries.
We present results based on a Baade-Wesselink analysis of Cepheids in the Small Magellanic Cloud. The Baade-Wesselink analysis provides individual luminosities for these metal-poor Cepheids which combined with recent Baade-Wesselink results from Gieren et al. (1998) on solar metallicity Galactic Cepheids constrain the metallicity effect on the zero-point of the Cepheid P-L relation. A preliminary analysis leads to an effect of dMv / d[Fe/H]= -0.45 +-0.15, metal-rich Cepheids being brighter, in good agreement with several recent independent determinations. An effect of this magnitude reduces significantly the current disagreement between the long and the short distance estimates to the LMC, and favors a shorter value.
The extragalactic distance scale builds on the Cepheid period-luminosity (PL) relation. In this paper, we want to carry out a strictly differential comparison of the absolute PL relations obeyed by classical Cepheids in the Milky Way (MW), LMC and SMC galaxies. Taking advantage of the substantial metallicity difference among the Cepheid populations in these three galaxies, we want to establish a possible systematic trend of the PL relation absolute zero point as a function of metallicity, and determine the size of such an effect in optical and near-infrared photometric bands. We are using the IRSB Baade-Wesselink type method as calibrated by Storm et al. to determine individual distances to the Cepheids in our samples in MW, LMC and SMC. For our analysis, we use a greatly enhanced sample of Cepheids in the SMC (31 stars) as compared to the small sample (5 stars) available in our previous work. We use the distances to determine absolute Cepheid PL relations in optical and near-infrared bands in each of the three galaxies.} {Our distance analysis of 31 SMC Cepheids with periods from 4-69 days yields tight PL relations in all studied bands, with slopes consistent with the corresponding LMC and MW relations. Adopting the very accurately determined LMC slopes for the optical and near-infrared bands, we determine the zero point offsets between the corresponding absolute PL relations in the 3 galaxies. We find that in all bands the metal-poor SMC Cepheids are intrinsically fainter than their more metal-rich counterparts in the LMC and MW. In the $K$ band the metallicity effect is $-0.23pm0.06$~mag/dex while in the $V,(V-I)$ Wesenheit index it is slightly stronger, $-0.34pm0.06$~mag/dex. We find some evidence that the PL relation zero point-metallicity relation might be nonlinear, becoming steeper for lower metallicities.
We used Optical, Near Infrared photometry and radial velocity data for a sample of 11 Cepheids belonging to the young LMC blue populous cluster NGC 1866 to estimate their radii and distances on the basis of the CORS Baade-Wesselink method. This technique, based on an accurate calibration of the surface brightness as a function of (U-B), (V-K) colors, allows us to estimate, simultaneously, the linear radius and the angular diameter of Cepheid variables, and consequently to derive their distance. A rigorous error estimate on radius and distances was derived by using Monte Carlo simulations. Our analysis gives a distance modulus for NGC 1866 of 18.51+/-0.03 mag, which is in agreement with several independent results.
We present HST photometry of a selected sample of 50 long-period, low-extinction Milky Way Cepheids measured on the same WFC3 F555W, F814W, and F160W-band photometric system as extragalactic Cepheids in SN Ia hosts. These bright Cepheids were observed with the WFC3 spatial scanning mode in the optical and near-infrared to mitigate saturation and reduce pixel-to-pixel calibration errors to reach a mean photometric error of 5 millimags per observation. We use the new Gaia DR2 parallaxes and HST photometry to simultaneously constrain the cosmic distance scale and to measure the DR2 parallax zeropoint offset appropriate for Cepheids. We find a value for the zeropoint offset of -46 +/- 13 muas or +/- 6 muas for a fixed distance scale, higher than found from quasars, as expected, for these brighter and redder sources. The precision of the distance scale from DR2 has been reduced by a factor of 2.5 due to the need to independently determine the parallax offset. The best fit distance scale is 1.006 +/- 0.033, relative to the scale from Riess et al 2016 with H0=73.24 km/s/Mpc used to predict the parallaxes photometrically, and is inconsistent with the scale needed to match the Planck 2016 CMB data combined with LCDM at the 2.9 sigma confidence level (99.6%). At 96.5% confidence we find that the formal DR2 errors may be underestimated as indicated. We identify additional error associated with the use of augmented Cepheid samples utilizing ground-based photometry and discuss their likely origins. Including the DR2 parallaxes with all prior distance ladder data raises the current tension between the late and early Universe route to the Hubble constant to 3.8 sigma (99.99 %). With the final expected precision from Gaia, the sample of 50 Cepheids with HST photometry will limit to 0.5% the contribution of the first rung of the distance ladder to the uncertainty in the Hubble constant.