Do you want to publish a course? Click here

Supernova Neutrino Light Curves and Spectra for Various Progenitor Stars: From Core Collapse to Proto-neutron Star Cooling

216   0   0.0 ( 0 )
 Added by Ken'ichiro Nakazato
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new series of supernova neutrino light curves and spectra calculated by numerical simulations for a variety of progenitor stellar masses (13-50Msolar) and metallicities (Z = 0.02 and 0.004), which would be useful for a broad range of supernova neutrino studies, e.g., simulations of future neutrino burst detection by underground detectors, or theoretical predictions for the relic supernova neutrino background. To follow the evolution from the onset of collapse to 20 s after the core bounce, we combine the results of neutrino-radiation hydrodynamic simulations for the early phase and quasi-static evolutionary calculations of neutrino diffusion for the late phase, with different values of shock revival time as a parameter that should depend on the still unknown explosion mechanism. We here describe the calculation methods and basic results including the dependence on progenitor models and the shock revival time. The neutrino data are publicly available electronically.



rate research

Read More

242 - Yudai Suwa 2020
Neutrinos are a guaranteed signal from supernova explosions in the Milky Way, and a most valuable messenger that can provide us with information about the deepest parts of supernovae. In particular, neutrinos will provide us with physical quantities, such as the radius and mass of protoneutron stars (PNS), which are the central engine of supernovae. This requires a theoretical model that connects observables such as neutrino luminosity and average energy with physical quantities. Here, we show analytic solutions for the neutrino-light curve derived from the neutrino radiation transport equation by employing the diffusion approximation and the analytic density solution of the hydrostatic equation for a PNS. The neutrino luminosity and the average energy as functions of time are explicitly presented, with dependence on PNS mass, radius, the total energy of neutrinos, surface density, and opacity. The analytic solutions provide good representations of the numerical models from a few seconds after the explosion and allow a rough estimate of these physical quantities to be made from observational data.
In the last decade there has been a remarkable increase in our knowledge about core-collapse supernovae (CC-SNe), and the birthplace of neutron stars, from both the observational and the theoretical point of view. Since the 1930s, with the first systematic supernova search, the techniques for discovering and studying extragalactic SNe have improved. Many SNe have been observed, and some of them, have been followed through efficiently and with detail. Furthermore, there has been a significant progress in the theoretical modelling of the scenario, boosted by the arrival of new generations of supercomputers that have allowed to perform multidimensional numerical simulations with unprecedented detail and realism. The joint work of observational and theoretical studies of individual SNe over the whole range of the electromagnetic spectrum has allowed to derive physical parameters, which constrain the nature of the progenitor, and the composition and structure of the stars envelope at the time of the explosion. The observed properties of a CC-SN are an imprint of the physical parameters of the explosion such as mass of the ejecta, kinetic energy of the explosion, the mass loss rate, or the structure of the star before the explosion. In this chapter, we review the current status of SNe observations and theoretical modelling, the connection with their progenitor stars, and the properties of the neutron stars left behind.
This paper presents the first systematic study of proto-neutron star (PNS) convection in three dimensions (3D) based on our latest numerical Fornax models of core-collapse supernova (CCSN). We confirm that PNS convection commonly occurs, and then quantify the basic physical characteristics of the convection. By virtue of the large number of long-term models, the diversity of PNS convective behavior emerges. We find that the vigor of PNS convection is not correlated with CCSN dynamics at large radii, but rather with the mass of PNS $-$ heavier masses are associated with stronger PNS convection. We find that PNS convection boosts the luminosities of $ u_{mu}$, $ u_{tau}$, $bar{ u}_{mu}$, and $bar{ u}_{tau}$ neutrinos, while the impact on other species is complex due to a competition of factors. Finally, we assess the consequent impact on CCSN dynamics and the potential for PNS convection to generate pulsar magnetic fields.
151 - H. Andresen 2018
We present predictions for the gravitational-wave (GW) emission of three-dimensional supernova (SN) simulations performed for a 15 solar-mass progenitor with the Prometheus-Vertex code using energy-dependent, three-flavor neutrino transport. The progenitor adopted from stellar evolution calculations including magnetic fields had a fairly low specific angular momentum (j_Fe <~ 10^{15} cm^2/s) in the iron core (central angular velocity ~0.2 rad/s), which we compared to simulations without rotation and with artificially enhanced rotation (j_Fe <~ 2*10^{16} cm^2/s; central angular velocity ~0.5 rad/s). Our results confirm that the time-domain GW signals of SNe are stochastic, but possess deterministic components with characteristic patterns at low frequencies (<~200 Hz), caused by mass motions due to the standing accretion shock instability (SASI), and at high frequencies, associated with gravity-mode oscillations in the surface layer of the proto-neutron star (PNS). Non-radial mass motions in the post-shock layer as well as PNS convection are important triggers of GW emission, whose amplitude scales with the power of the hydrodynamic flows. There is no monotonic increase of the GW amplitude with rotation, but a clear correlation with the strength of SASI activity. Our slowly rotating model is a fainter GW emitter than the non-rotating model because of weaker SASI activity and damped convection in the post-shock layer and PNS. In contrast, the faster rotating model exhibits a powerful SASI spiral mode during its transition to explosion, producing the highest GW amplitudes with a distinctive drift of the low-frequency emission peak from ~80-100 Hz to ~40-50 Hz. This migration signifies shock expansion, whereas non-exploding models are discriminated by the opposite trend.
284 - Victor Utrobin 2018
With the same method as used previously, we investigate neutrino-driven explosions of a larger sample of blue supergiant models. The larger sample includes three new presupernova stars. The results are compared with light-curve observations of the peculiar type IIP SN 1987A. The explosions were modeled in 3D with the neutrino-hydrodynamics code PROMETHEUS-HOTB, and light-curve calculations were performed in spherical symmetry with the radiation-hydrodynamics code CRAB. Our results confirm the basic findings of the previous work: 3D neutrino-driven explosions with SN 1987A-like energies synthesize an amount of Ni-56 that is consistent with the radioactive tail of the light curve. Moreover, the models mix hydrogen inward to minimum velocities below 400 km/s as required by spectral observations. Hydrodynamic simulations with the new progenitor models, which possess smaller radii than the older ones, show much better agreement between calculated and observed light curves in the initial luminosity peak and during the first 20 days. A set of explosions with similar energies demonstrated that a high growth factor of Rayleigh-Taylor instabilities at the (C+O)/He composition interface combined with a weak interaction of fast Rayleigh-Taylor plumes, where the reverse shock occurs below the He/H interface, provides a sufficient condition for efficient outward mixing of Ni-56 into the hydrogen envelope. This condition is realized to the required extent only in one of the older stellar models, which yielded a maximum velocity of around 3000 km/s for the bulk of ejected Ni-56, but failed to reproduce the helium-core mass of 6 Msun inferred from the absolute luminosity of the presupernova star. We conclude that none of the single-star progenitor models proposed for SN 1987A to date satisfies all constraints set by observations. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا