Do you want to publish a course? Click here

X-ray Properties of Intermediate-mass Black Holes in Active Galaxies. III. Spectral Energy Distribution and Possible Evidence for Intrinsically X-ray-weak AGNs

399   0   0.0 ( 0 )
 Added by Ruobing Dong
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a systematic X-ray study, the third in a series, of 49 active galactic nuclei with intermediate-mass black holes (IMBH; ~10^5-10^6 M_sun) using Chandra observations. We detect 42 out of 49 targets with a 0.5-2 keV X-ray luminosity 10^41-10^43 erg/s. We perform spectral fitting for the 10 objects with enough counts (>200), and they are all well fit by a simple power-law model modified by Galactic absorption, with no sign of significant intrinsic absorption. While we cannot fit the X-ray spectral slope directly for the rest of the sample, we estimate it from the hardness ratio and find a range of photon indices consistent with those seen in more luminous and massive objects. The X-ray-to-optical spectral slope (alphaox) of our IMBH sample is systematically flatter than in active galaxies with more massive black holes, consistent with the well-known correlation between alphaox and UV luminosity. Thanks to the wide dynamic range of our sample, we find evidence that alphaox increases with decreasing M_BH as expected from accretion disk models, where the UV emission systematically decreases as M_BH decreases and the disk temperature increases. We also find a long tail toward low alphaox values. While some of these sources may be obscured, given the high L_bol/L_Eddington values in the sample, we argue that some may be intrinsically X-ray-weak, perhaps owing to a rare state that radiates very little coronal emission.



rate research

Read More

247 - Andrew D. Sutton 2012
We present the results from an X-ray and optical study of a new sample of eight extreme luminosity ultraluminous X-ray source (ULX) candidates, which were selected as the brightest ULXs (with L_X > 5x10^40 erg/s) located within 100 Mpc identified in a cross correlation of the 2XMM-DR1 and RC3 catalogues. These objects are so luminous that they are difficult to describe with current models of super-Eddington accretion onto all but the most massive stellar remnants; hence they are amongst the most plausible candidates to host larger, intermediate-mass black holes (IMBHs). Two objects are luminous enough in at least one observation to be classed as hyperluminous X-ray source (HLX) candidates, including one persistent HLX in an S0 galaxy that (at 3x10^41 erg/s) is the second most luminous HLX yet detected. The remaining seven sources are located in spiral galaxies, and several appear to be closely associated with regions of star formation as is common for many less luminous ULXs. However, the X-ray characteristics of these extreme ULXs appear to diverge from the less luminous objects. They are typically harder, possessing absorbed power-law continuum spectra with photon indexes ~ 1.7, and are potentially more variable on short timescales, with data consistent with ~ 10-20 per cent rms variability on timescales of 0.2-2 ks. These properties appear consistent with the sub-Eddington hard state, which given the observed luminosities of these objects suggests the presence of IMBHs with masses in the range 10^3-10^4 M_Sun. As such, this strengthens the case for these brightest ULXs as good candidates for the eventual conclusive detection of the highly elusive IMBHs. However, we caution that a combination of the highest plausible super-Eddington accretion rates and the largest permitted stellar black hole remnants cannot be ruled out without future, improved observations.
234 - G. C. Dewangan 2008
We present a systematic X-ray study of eight AGNs with intermediate mass black holes (M_BH 8-95x10^4 Msun) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class - NGC4395 and POX52 and six other AGNs discovered with the SDSS. These AGNs show some of the strongest X-ray variability with the normalized excess variances being the largest and the power density break time scales being the shortest observed among radio-quiet AGNs. The excess variance -- luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break time scale -- black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hbeta or Halpha line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kT_in~150-200eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC4395 with lowest L/L_Edd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low mass extension of more massive AGNs; those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1s while those with low $L/L_{Edd}$ looking more like broad-line Seyfert 1s.
We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the young early-type galaxy NGC 3384 (~2-5 Gyr) has an excess of luminous field LMXBs (L_X > (5-10) x 10^37 erg/s) per unit K-band luminosity (L_K; a proxy for stellar mass) than the old early-type galaxies NGC 3115 and 3379 (~8-10 Gyr), which results in a factor of ~2-3 excess of LX/LK for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.
64 - L. Blecha 2005
While many observed ultra-luminous X-ray sources (ULXs, Lx > 10^39 erg s^-1) could be extragalactic X-ray binaries (XRBs) emitting close to the Eddington limit, the highest-luminosity ULXs (Lx > 3x10^39 erg s^-1) exceed the isotropic Eddington luminosity for even high-stellar-mass accreting black hole XRBs. It has been suggested that these highest-luminosity ULXs may contain accreting intermediate-mass black hole (IMBH) binaries. We consider this hypothesis for dense, young (about 100 Myr) stellar clusters where we assume that a 50-500 solar mass central IMBH has formed through runaway growth of a massive star. Using numerical simulations of the dynamics and evolution of the central black holes captured companions, we obtain estimates of the incidence of mass transfer phases and possible ULX activity throughout the IMBHs evolutionary history. We find that, although it is common for the central black hole to acquire binary companions, there is a very low probability that these interacting binaries will become observable ULX sources.
RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results. Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36eV and 7keV. The spectral fits give evidence of a partially absorbing and a reflection component. Multitemperature models, covering a broader temperature range in the X-ray emitting accretion regions, reproduce the spectra appropriately well. Including archival data, we describe the spectral energy distribution with a combination of models based on a consistent set of parameters and derive a lower limit estimate of the distance d > 750pc. Conclusions. The high bolometric soft-to-hard flux ratios and short-term variability of the (X-ray) light curves are characteristic of inhomogeneous accretion. RS Cae clearly belongs in the group of polars that show a very strong soft X-ray flux compared to their hard X-ray flux. The different black-body fluxes and similar hard X-ray and optical fluxes during the XMM-Newton and ROSAT observations show that soft and hard X-ray emission are not directly correlated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا