Rattling and Superconducting Properties of the Cage Compound GaxV2Al20


Abstract in English

Low-energy rattling modes and their effects on superconductivity are studied in the cage compound GaxV2Al20. A series of polycrystalline samples of 0 < x =< 0.6 are examined through resistivity, magnetic susceptibility, and heat capacity measurements. A weak-coupling BCS superconductivity is observed below Tc = 1.4-1.7 K for all the samples. For small Ga contents below 0.20, approximately 30% of the cages are occupied by rattling Al atoms having an Einstein temperature TE of 23 K, probably with most Ga atoms substituting for the cage-forming Al atoms. For higher Ga contents, approximately 0.05 Ga and 0.25-0.35 Al atoms coexist statistically inside the cages and behave as rattlers with TE ~ 8 and 23 K, respectively. A significant effect of Ga rattling on the superconductivity is clearly evidenced by the observation of a sharp rise in Tc by 8% at x = 0.20 when 0.05 Ga atoms are introduced into the case. Probably, the electron-phonon interaction is significantly enhanced by an additional contribution to the phonon density of states from the extremely low energy rattling modes of Ga atoms. In addition, a large softening of the acoustic modes is observed for x => 0.20, suggesting that the cage itself becomes anomalously soft in the presence of low-energy Ga rattling modes.

Download