A Self-Consistent Model of the Circumstellar Debris Created by a Giant Hypervelocity Impact in the HD172555 System


Abstract in English

Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10^19 kg of sub-micron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at approximately 6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the systems mid-infrared photometric flux, dominated by submicron grains, has been stable within 4 percent over the last 27 years, from IRAS (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that 10^47 molecules of SiO vapor are needed to explain an emission feature at 8 um in the Spitzer IRS spectrum of HD 172555. We find that unless there are 10^48 atoms or 0.05 Earth masses of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the 8 um feature can be emission from solid SiO, which naturally occurs in submicron silicate smokes created by quickly condensing vaporized silicate.

Download