No Arabic abstract
There is no quantitative theory to explain why a high 80% of all planetary nebulae are non-spherical. The Binary Hypothesis states that a companion to the progenitor of a central star of planetary nebula is required to shape the nebula and even for a planetary nebula to be formed at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebulae and to compare it with that of the main sequence population. Preliminary results from photometric variability and the infrared excess techniques indicate that the binary fraction of central stars of planetary nebulae is higher than that of the main sequence, implying that PNe could preferentially form via a binary channel. This article briefly reviews these results and current studies aiming to refine the binary fraction.
Planetary nebulae (PNe) are circumstellar gas ejected during an intense mass-losing phase in the the lives of asymptotic giant branch stars. PNe have a stunning variety of shapes, most of which are not spherically symmetric. The debate over what makes and shapes the circumstellar gas of these evolved, intermediate mass stars has raged for two decades. Today the community is reaching a consensus that single stars cannot trivially manufacture PNe and impart to them non spherical shapes and that a binary companion, possibly even a sub-stellar one, might be needed in a majority of cases. This theoretical conjecture has however not been tested observationally. In this review we discuss the problem both from the theoretical and observational standpoints, explaining the obstacles that stand in the way of a clean observational test and ways to ameliorate the situation. We also discuss indirect tests of this hypothesis and its implications for stellar and galactic astrophysics.
In 1997 Soker laid out a framework for understanding the formation and shaping of planetary nebulae (PN). Starting from the assumption that non-spherical PN cannot be formed by single stars, he linked PN morphologies to the binary mechanisms that may have formed them, basing these connections almost entirely on observational arguments. In light of the last decade of discovery in the field of PN, we revise this framework, which, although simplistic, can still serve as a benchmark against which to test theories of PN origin and shaping. Within the framework, we revisit the role of planets in shaping PN. Soker invoked a planetary role in shaping PN because there are not enough close binaries to shape the large fraction of non-spherical PN. In this paper we adopt a model whereby only ~20% of all 1-8 solar mass stars make a PN. This reduces the need for planetary shaping. Through a propagation of percentages argument, and starting from the assumption that planets can only shape mildly elliptical PN, we conclude, like in Soker, that ~20% of all PN were shaped via planetary and other substellar interactions but we add that this corresponds to only ~5% of all 1-8 solar mass stars. This may be in line with findings of planets around main sequence stars. PN shaping by planets is made plausible by the recent discovery of planets that have survived interactions with red giant branch (RGB) stars. Finally, we conclude that of the ~80% of 1-8 solar mass stars that do not make a PN, about one quarter do not even ascend the AGB due to interactions with stellar and substellar companions, while three quarters ascend the AGB but do not make a PN. Once these stars leave the AGB they evolve normally and can be confused with post-RGB, extreme horizontal branch stars. We propose tests to identify them.
The morphology of planetary nebulae emerging from the common envelope phase of binary star evolution is investigated. Using initial conditions based on the numerical results of hydrodynamical simulations of the common envelope phase it is found that the shapes and sizes of the resulting nebula are very sensitive to the effective temperature of the remnant core, the mass-loss rate at the onset of the common envelope phase, and the mass ratio of the binary system. These parameters are related to the efficiency of the mass ejection after the spiral-in phase, the stellar evolutionary phase (i.e., RG, AGB or TP-AGB), and the degree of departure from spherical symmetry in the stellar wind mass loss process itself respectively. It is found that the shapes are mostly bipolar in the early phase of evolution, but can quickly transition to elliptical and barrel-type shapes. Solutions for nested lobes are found where the outer lobes are usually bipolar and the inner lobes are elliptical, bipolar or barrel-type, a result due to the flow of the photo-evaporated gas from the equatorial region. It is found that the lobes can be produced without the need for two distinct mass ejection events. In all the computations, the bulk of the mass is concentrated in the orbital or equatorial plane, in the form of a large toroid, which can be either neutral (early phases) or photoionized (late phases), depending of the evolutionary state of the system.
We compute successfully the launching of two magnetic winds from two circumbinary disks formed after a common envelope event. The launching is produced by the increase of magnetic pressure due to the collapse of the disks. The collapse is due to internal torques produced by a weak poloidal magnetic field. The first wind can be described as a wide jet, with an average mass-loss rate of $sim 1.3 times 10^{-7}$ Moy and a maximum radial velocity of $sim 230$ kms. The outflow has a half-opening angle of $sim 20^{circ}$. Narrow jets are also formed intermittently with velocities up to 3,000 kms, with mass-loss rates of $sim 6 times 10^{-12} $ Moy during short periods of time. The second wind can be described as a wide X-wind, with an average mass-loss rate of $sim 1.68 times 10^{-7}$ Moy and a velocity of $sim 30$ kms. A narrow jet is also formed with a velocity of 250 kms, and a mass-loss rates of $sim 10^{-12} $ Moy. The computed jets are used to provide inflow boundary conditions for simulations of proto-planetary nebulae. The wide jet evolves into a molecular collimated outflow within a few astronomical units, producing proto-planetary nebulae with bipolar, elongated shapes, whose kinetic energies reach $sim 4 times 10^{45}$ erg at 1,000 years. Similarities with observed features in W43A, OH231.8+4.2, and Hen 3-1475 are discussed. The computed wide X-wind produces proto-planetary nebulae with slower expansion velocities, with bipolar and elliptical shapes, and possible starfish type and quadrupolar morphology.
We present observations of three FU Orionis objects (hereafter, FUors) with nonredundant aperture-mask interferometry (NRM) at 1.59 um and 2.12 um that probe for binary companions on the scale of the protoplanetary disk that feeds their accretion outbursts. We do not identify any companions to V1515 Cyg or HBC 722, but we do resolve a close binary companion to V1057 Cyg that is at the diffraction limit (rho = 58.3 +/- 1.4 mas or 30 +/- 5 AU) and currently much fainter than the outbursting star (delta(K) = 3.34 +/- 0.10 mag). Given the flux excess of the outbursting star, we estimate that the mass of the companion (M ~ 0.25 Msun) is similar to or slightly below that of the FUor itself, and therefore it resembles a typical T Tauri binary system. Our observations only achieve contrast limits of delta(K) ~ 4 mag, and hence we are only sensitive to companions that were near or above the pre-outburst luminosity of the FUors. It remains plausible that FUor outbursts could be tied to the presence of a close binary companion. However, we argue from the system geometry and mass reservoir considerations that these outbursts are not directly tied to the orbital period (i.e., occurring at periastron passage), but instead must only occur infrequently.