No Arabic abstract
The interplay between superconductivity and Eu$ ^{2+}$ magnetic moments in EuFe$_2$(As$_{1-x}$P$_x$)$_2$ is studied by electrical resistivity measurements under hydrostatic pressure on $x=0.13$ and $x=0.18$ single crystals. We can map hydrostatic pressure to chemical pressure $x$ and show, that superconductivity is confined to a very narrow range $0.18leq x leq 0.23$ in the phase diagram, beyond which ferromagnetic (FM) Eu ordering suppresses superconductivity. The change from antiferro- to FM Eu ordering at the latter concentration coincides with a Lifshitz transition and the complete depression of iron magnetic order.
In order to study the phase diagram from a microscopic viewpoint, we have measured wTF- and ZF-$mu^+$SR spectra for the Sr$_{1-x}$Ca$_x$Co$_2$P$_2$ powder samples with $x=0$, 0.2, 0.4, 0.5, 0.6, 0.8, and 1. Due to a characteristic time window and spatial resolution of $mu^+$SR, the obtained phase diagram was found to be rather different from that determined by magnetization measurements. That is, as $x$ increases from 0, a Pauli-paramagnetic phase is observed even at the lowest $T$ measured (1.8~K) until $x=0.4$, then, a spin-glass like phase appears at $0.5leq xleq0.6$, and then, a phase with wide field distribution probably due to incommensurate AF order is detected for $x=0.8$, and finally, a commensurate $A$-type AF ordered phase (for $x=1$) is stabilized below $T_{rm N}sim80~$K. Such change is most likely reasonable and connected to the shrink of the $c$-axis length with $x$, which naturally enhances the magnetic interaction between the two adjacent Co planes.
Unconventional superconductivity arises at the border between the strong coupling regime with local magnetic moments and the weak coupling regime with itinerant electrons, and stems from the physics of criticality that dissects the two. Unveiling the nature of the quasiparticles close to quantum criticality is fundamental to understand the phase diagram of quantum materials. Here, using resonant inelastic x-ray scattering (RIXS) and Fe-K$_beta$ emission spectroscopy (XES), we visualize the coexistence and evolution of local magnetic moments and collective spin excitations across the superconducting dome in isovalently-doped BaFe$_2$(As$_{1-x}$P$_x$)$_2$ (0.00$leq$x$leq0.$52). Collective magnetic excitations resolved by RIXS are gradually hardened, whereas XES reveals a strong suppression of the local magnetic moment upon doping. This relationship is captured by an intermediate coupling theory, explicitly accounting for the partially localized and itinerant nature of the electrons in Fe pnictides. Finally, our work identifies a local-itinerant spin fluctuations channel through which the local moments transfer spin excitations to the particle-hole (paramagnons) continuum across the superconducting dome.
The magnetic ground state of the Eu$^{2+}$ moments in a series of Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macroscopic properties (resistivity, magnetic susceptibility and specific heat) measurements, a phase diagram describing how the Eu magnetic order evolves with Co doping in Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ is established. The ground-state magnetic structure of the Eu$^{2+}$ spins is found to develop from the A-type antiferromagnetic (AFM) order in the parent compound, via the A-type canted AFM structure with some net ferromagnetic (FM) moment component along the crystallographic $mathit{c}$ direction at intermediate Co doping levels, finally to the pure FM order at relatively high Co doping levels. The ordering temperature of Eu declines linearly at first, reaches the minimum value of 16.5(2) K around $mathit{x}$ = 0.100(4), and then reverses upwards with further Co doping. The doping-induced modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu$^{2+}$ moments, which is mediated by the conduction $mathit{d}$ electrons on the (Fe,Co)As layers, as well as the change of the strength of the direct interaction between the Eu$^{2+}$ and Fe$^{2+}$ moments, might be responsible for the change of the magnetic ground state and the ordering temperature of the Eu sublattice. In addition, for Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals with 0.10 $leqslant$ $mathit{x}$ $leqslant$ 0.18, strong ferromagnetism from the Eu sublattice is well developed in the superconducting state, where a spontaneous vortex state is expected to account for the compromise between the two competing phenomena.
We report resistivity $rho$ and Hall effect measurements on EuFe$_2$As$_2$ at ambient pressure and 28 kbar and magnetization measurements at ambient pressure. We analyze the temperature and magnetic-field dependence of $rho$ and the Hall effect using a molecular-field theory for magnetoresistance and an empirical formula for the anomalous Hall effect and find that electron scattering due to the Eu$^{2+}$ local moments plays only a minor role in determining electronic transport properties of EuFe$_2$As$_2$.
In many classes of unconventional superconductors, the question of whether the superconductivity is enhanced by the quantum-critical fluctuations on the verge of an ordered phase remains elusive. One of the most direct ways of addressing this issue is to investigate how the superconducting dome traces a shift of the ordered phase. Here, we study how the phase diagram of the iron-based superconductor BaFe$_2$(As$_{1-x}$P$_x$)$_2$ changes with disorder via electron irradiation, which keeps the carrier concentrations intact. With increasing disorder, we find that the magneto-structural transition is suppressed, indicating that the critical concentration is shifted to the lower side. Although the superconducting transition temperature $T_c$ is depressed at high concentrations ($xgtrsim$0.28), it shows an initial increase at lower $x$. This implies that the superconducting dome tracks the shift of the antiferromagnetic phase, supporting the view of the crucial role played by quantum-critical fluctuations in enhancing superconductivity in this iron-based high-$T_c$ family.