Do you want to publish a course? Click here

Luttinger Liquid in Non-equilibrium Steady State

201   0   0.0 ( 0 )
 Added by Mihail Mintchev
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose and investigate an exactly solvable model of non-equilibrium Luttinger liquid on a star graph, modeling a multi-terminal quantum wire junction. The boundary condition at the junction is fixed by an orthogonal matrix S, which describes the splitting of the electric current among the leads. The system is driven away from equilibrium by connecting the leads to heat baths at different temperatures and chemical potentials. The associated non-equilibrium steady state depends on S and is explicitly constructed. In this context we develop a non-equilibrium bosonization procedure and compute some basic correlation functions. Luttinger liquids with general anyon statistics are considered. The relative momentum distribution away from equilibrium turns out to be the convolution of equilibrium anyon distributions at different temperatures. Both the charge and heat transport are studied. The exact current-current correlation function is derived and the zero-frequency noise power is determined.



rate research

Read More

Time-periodic driving facilitates a wealth of novel quantum states and quantum engineering. The interplay of Floquet states and strong interactions is particularly intriguing, which we study using time-periodic fields in a one-dimensional quantum gas, modeled by a Luttinger liquid with periodically changing interactions. By developing a time-periodic operator algebra, we are able to solve and analyze the complete set of non-equilibrium steady states in terms of a Floquet-Bogoliubov ansatz and known analytic functions. Complex valued Floquet eigenenergies occur when multiples of driving frequency approximately match twice the dispersion energy, which correspond to resonant states. In experimental systems of Lieb-Liniger bosons we predict a change from powerlaw correlations to dominant collective density wave excitations at the corresponding wave numbers as the frequency is lowered below a characteristic cut-off.
We present the first holographic simulations of non-equilibrium steady state formation in strongly coupled $mathcal{N}=4$ SYM theory in 3+1 dimensions. We initially join together two thermal baths at different temperatures and chemical potentials and compare the subsequent evolution of the combined system to analytic solutions of the corresponding Riemann problem and to numeric solutions of ideal and viscous hydrodynamics. The time evolution of the energy density that we obtain holographically is consistent with the combination of a shock and a rarefaction wave: A shock wave moves towards the cold bath, and a smooth broadening wave towards the hot bath. Between the two waves emerges a steady state with constant temperature and flow velocity, both of which are accurately described by a shock+rarefaction wave solution of the Riemann problem. In the steady state region, a smooth crossover develops between two regions of different charge density. This is reminiscent of a contact discontinuity in the Riemann problem. We also obtain results for the entanglement entropy of regions crossed by shock and rarefaction waves and find both of them to closely follow the evolution of the energy density.
The Sachdev-Ye-Kitaev (SYK) model incorporates rich physics, ranging from exotic non-Fermi liquid states without quasiparticle excitations, to holographic duality and quantum chaos. However, its experimental realization remains a daunting challenge due to various unnatural ingredients of the SYK Hamiltonian such as its strong randomness and fully nonlocal fermion interaction. At present, constructing such a nonlocal Hamiltonian and exploring its dynamics is best through digital quantum simulation, where state-of-the-art techniques can already handle a moderate number of qubits. Here we demonstrate a first step towards simulation of the SYK model on a nuclear-spin-chain simulator. We observed the fermion paring instability of the non-Fermi liquid state and the chaotic-nonchaotic transition at simulated temperatures, as was predicted by previous theories. As the realization of the SYK model in practice, our experiment opens a new avenue towards investigating the key features of non-Fermi liquid states, as well as the quantum chaotic systems and the AdS/CFT duality.
We continue our investigation of kinetic models of a one-dimensional gas in contact with homogeneous thermal reservoirs at different temperatures. Nonlinear collisional interactions between particles are modeled by a so-called BGK dynamics which conserves local energy and particle density. Weighting the nonlinear BGK term with a parameter $alphain [0,1]$, and the linearinteraction with the reservoirs by $(1-alpha)$, we prove that for all $alpha$ close enough to zero, the explicit spatially uniform non-equilibrium stable state (NESS) is emph{unique}, and there are no spatially non-uniform NESS with a spatial density $rho$ belonging to $L^p$ for any $p>1$. We also show that for all $alphain [0,1]$, the spatially uniform NESS is dynamically stable, with small perturbation converging to zero exponentially fast.
We consider parameter estimations with probes being the boundary driven/dissipated non- equilibrium steady states of XXZ spin 1/2 chains. The parameters to be estimated are the dissipation coupling and the anisotropy of the spin-spin interaction. In the weak coupling regime we compute the scaling of the Fisher information, i.e. the inverse best sensitivity among all estimators, with the number of spins. We find superlinear scalings and transitions between the distinct, isotropic and anisotropic, phases. We also look at the best relative error which decreases with the number of particles faster than the shot-noise only for the estimation of anisotropy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا