Do you want to publish a course? Click here

On general Lagrangian formulations for arbitrary mixed-symmetric higher-spin fermionic fields on Minkowski backgrounds

183   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The details of unconstrained Lagrangian formulations (being continuation of earlier developed research for Bose particles in NPB 862 (2012) 270, [arXiv:1110.5044[hep-th]], Phys. of Part. and Nucl. 43 (2012) 689, [arXiv:1202.4710 [hep-th]]) are reviewed for Fermi particles propagated on an arbitrary dimensional Minkowski space-time and described by the unitary irreducible half-integer higher-spin representations of the Poincare group subject to Young tableaux $Y(s_1,...,s_k)$ with $k$ rows. The procedure is based on the construction of the Verma modules and finding auxiliary oscillator realizations for the orthosymplectic $osp(1|2k)$ superalgebra which encodes the second-class operator constraints subsystem in the HS symmetry superalgebra. Applying of an universal BRST-BFV approach permit to reproduce gauge-invariant Lagrangians with reducible gauge symmetries describing the free dynamics of both massless and massive fermionic fields of any spin with appropriate number of gauge and Stukelberg fields. The general construction possesses by the obvious possibility to derive Lagrangians with only holonomic constraints.



rate research

Read More

We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having $k$ rows, on a basis of the BRST--BFV approach suggested for bosonic fields in our first article (Nucl. Phys. B862 (2012) 270, [arXiv:1110.5044[hep-th]). Starting from a description of fermionic mixed-symmetry higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space associated with a special Poincare module, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a system of first-class constraints. To do this, we find, in first time, by means of generalized Verma module the auxiliary representations of the constraint subsuperalgebra, to be isomorphic due to Howe duality to $osp(k|2k)$ superalgebra, and containing the subsystem of second-class constraints in terms of new oscillator variables. We suggest a universal procedure of finding unconstrained gauge-invariant Lagrangians with reducible gauge symmetries, describing the dynamics of both massless and massive fermionic fields of any spin. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by constraints corresponding to an irreducible Poincare-group representation. As examples of the general approach, we propose a method of Lagrangian construction for fermionic fields subject to an arbitrary Young tableaux having 3 rows, and obtain a gauge-invariant Lagrangian for a new model of a massless rank-3 spin-tensor field of spin (5/2,3/2) with first-stage reducible gauge symmetries and a non-gauge Lagrangian for a massive rank-3 spin-tensor field of spin (5/2,3/2).
The details of Lagrangian description of irreducible integer higher-spin representations of the Poincare group with an Young tableaux $Y[hat{s}_1,hat{s}_2]$ having $2$ columns are considered for Bose particles propagated on an arbitrary dimensional Minkowski space-time. The procedure is based, first, on using of an auxiliary Fock space generated by Fermi oscillators (antisymmetric basis), second, on construction of the Verma module and finding auxiliary oscillator realization for $sl(2)oplus sl(2)$ algebra which encodes the second-class operator constraints subsystem in the HS symmetry superalgebra. Application of an BRST-BFV receipt permits to reproduce gauge-invariant Lagrangians with reducible gauge symmetries describing the free dynamics of both massless and massive mixed-antisymmetric bosonic fields of any spin with appropriate number of gauge and Stueckelberg fields. The general prescription possesses by the possibility to derive constrained Lagrangians with only BRST-invariant extended algebraic constraints which describes the Poincare group irreducible representations in terms of mixed-antisymmetric tensor fields with 2 group indices.
We construct a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with the corresponding Young tableaux having two rows, on a basis of the BRST approach. Starting with a description of fermionic higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a first-class constraint system. For this purpose, we find auxiliary representations of the constraint subsuperalgebra containing the subsystem of second-class constraints in terms of Verma modules. We propose a universal procedure of constructing gauge-invariant Lagrangians with reducible gauge symmetries describing the dynamics of both massless and massive fermionic fields of any spin. No off-shell constraints for the fields and gauge parameters are used from the very beginning. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by the constraints corresponding to an irreducible Poincare-group representation. To illustrate the general construction, we obtain a Lagrangian description of fermionic fields with generalized spin (3/2,1/2) and (3/2,3/2) on a flat background containing the complete set of auxiliary fields and gauge symmetries.
Lagrangian descriptions of irreducible and reducible integer higher-spin representations of the Poincare group subject to a Young tableaux $Y[hat{s}_1,hat{s}_2]$ with two columns are constructed within a metric-like formulation in a $d$-dimensional flat space-time on the basis of a BRST approach extending the results of [arXiv:1412.0200[hep-th]]. A Lorentz-invariant resolution of the BRST complex within both the constrained and unconstrained BRST formulations produces a gauge-invariant Lagrangian entirely in terms of the initial tensor field $Phi_{[mu]_{hat{s}_1}, [mu]_{hat{s}_2}}$ subject to $Y[hat{s}_1,hat{s}_2]$ with an additional tower of gauge parameters realizing the $(hat{s}_1-1)$-th stage of reducibility with a specific dependence on the value $(hat{s}_1-hat{s}_2)=0,1,...,hat{s}_1$. Minimal BRST--BV action is suggested, being proper solution to the master equation in the minimal sector and providing objects appropriate to construct interacting Lagrangian formulations with mixed-antisymmetric fields in a general framework.
We consider a massless higher spin field theory within the BRST approach and construct a general off-shell cubic vertex corresponding to irreducible higher spin fields of helicities $s_1, s_2, s_3$. Unlike the previous works on cubic vertices, which do not take into account of the trace constraints, we use the complete BRST operator, including the trace constraints that describe an irreducible representation with definite integer helicity. As a result, we generalize the cubic vertex found in [arXiv:1205.3131 [hep-th]] and calculate the new contributions to the vertex, which contain additional terms with a smaller number space-time derivatives of the fields as well as the terms without derivatives.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا