Efficiently Engineered Room Temperature Single Photons in Silicon Carbide


Abstract in English

We report the first observation of stable single photon sources in silicon carbide (SiC). These sources are extremely bright and operate at room temperature demonstrating that SiC is a viable material in which to realize various quantum information, computation and photonic applications. The maximum single photon count rate detected is 700k counts/s with an inferred quantum efficiency around 70%. The single photon sources are due to intrinsic deep level defects constituted of carbon antisite-vacancy pairs. These are shown to be formed controllably by electron irradiation. The variability of the temporal kinetics of these single defects is investigated in detail.

Download