Do you want to publish a course? Click here

Superconductivity in a single layer alkali-doped FeSe: a weakly coupled two-leg ladder system

113   0   0.0 ( 0 )
 Added by Xi Chen
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prepare single layer potassium-doped iron selenide (110) film by molecular beam expitaxy. Such a single layer film can be viewed as a two-dimensional system composed of weakly coupled two-leg iron ladders. Scanning tunneling spectroscopy reveals that superconductivity is developed in this two-leg ladder system. The superconducting gap is similar to that of the multi-layer films. However, the Fermi surface topology given by first-principles calculation is remarkably different from that of the bulk materials. Our results suggest that superconducting pairing is very short-ranged or takes place rather locally in iron-chalcogenides. The superconductivity is most likely driven by electron-electron correlation effect and is insensitive to the change of Fermi surfaces.



rate research

Read More

195 - X. F. Wang 2011
We discover superconductivity in alkali-earth metals doped phenanthrene. The superconducting critical temperatures emph{T}$_c$ are 5.6 K and 5.4 K for Sr$_{1.5}$phenanthrene and Ba$_{1.5}$phenanthrene, respectively. The shielding fraction of Ba$_{1.5}$phenanthrene exceeds 65%. The Raman spectra show 8 cm$^{-1}$/electron and 7 cm$^{-1}$/electron downshifts for the mode at 1441 cm$^{-1}$ due to the charge transfer to organic molecules from the dopants of Ba and Sr. Similar behavior has been observed in A$_3$phenanthrene and A$_3$C$_{60}$(A = K and Rb). The positive pressure effect in Sr$_{1.5}$phenanthrene and Ba$_{1.5}$phenanthrene together with the lower $T_c$ with larger lattice indicates unconventional superconductivity in this organic system.
The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity.
222 - Xu Liu , Defa Liu , Wenhao Zhang 2014
The latest discovery of possible high temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate, together with the observation of its unique electronic structure and nodeless superconducting gap, has generated much attention. Initial work also found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer FeSe/SrTiO3 film shows an insulating behavior. Such a dramatic difference between the single-layer and double-layer FeSe/SrTiO3 films is surprising and the underlying origin remains unclear. Here we report our comparative study between the single-layer and double-layer FeSe/SrTiO3 films by performing a systematic angle-resolved photoemission study on the samples annealed in vacuum. We find that, like the single-layer FeSe/SrTiO3 film, the as-prepared double-layer FeSe/SrTiO3 film is insulating and possibly magnetic, thus establishing a universal existence of the magnetic phase in the FeSe/SrTiO3 films. In particular, the double-layer FeSe/SrTiO3 film shows a quite different doping behavior from the single-layer film in that it is hard to get doped and remains in the insulating state under an extensive annealing condition. The difference originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the origin of superconductivity and the doping mechanism in the FeSe/SrTiO3 films. The property disparity between the single-layer and double-layer FeSe/SrTiO3 films may facilitate to fabricate electronic devices by making superconducting and insulating components on the same substrate under the same condition.
We report on zero-field muon spin rotation, electron spin resonance and polarized Raman scattering measurements of the coupled quantum spin ladder Ba2CuTeO6. Zero-field muon spin rotation and electron spin resonance probes disclose a successive crossover from a paramagnetic through a spin-liquid-like into a magnetically ordered state with decreasing temperature. More significantly, the two-magnon Raman response obeys a T-linear scaling relation in its peak energy, linewidth and intensity. This critical scaling behavior presents an experimental signature of proximity to a quantum critical point from an ordered side in Ba2CuTeO6.
Single-layer FeSe films grown on the SrTiO3 substrate (FeSe/STO) have attracted much attention because of their possible record-high superconducting critical temperature Tc and distinct electronic structures in iron-based superconductors. However, it has been under debate on how high its Tc can really reach due to the inconsistency of the results obtained from the transport, magnetic and spectroscopic measurements. Here we report spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/STO films. By preparing high-quality single-layer FeSe/STO films, we observe for the first time strong superconductivity-induced Bogoliubov back-bending bands that extend to rather high binding energy ~100 meV by high-resolution angle-resolved photoemission measurements. The Bogoliubov back-bending band provides a new definitive benchmark of superconductivity pairing that is directly observed up to 83 K in the single-layer FeSe/STO films. Moreover, we find that the superconductivity pairing state can be further divided into two temperature regions of 64-83 K and below 64 K. We propose the 64-83 K region may be attributed to superconductivity fluctuation while the region below 64 K corresponds to the realization of long-range superconducting phase coherence. These results indicate that either Tc as high as 83 K is achievable in iron-based superconductors, or there is a pseudogap formation from superconductivity fluctuation in single-layer FeSe/STO films.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا