On finite-temperature holographic QCD in the Veneziano limit


Abstract in English

Holographic models in the T=0 universality class of QCD in the limit of large number N_c of colors and N_f massless fermion flavors, but constant ratio x_f=N_f/N_c, are analyzed at finite temperature. The models contain a 5-dimensional metric and two scalars, a dilaton sourcing TrF^2 and a tachyon dual to bar qq. The phase structure on the T,x_f plane is computed and various 1st order, 2nd order transitions and crossovers with their chiral symmetry properties are identified. For each x_f, the temperature dependence of p/T^4 and the quark-antiquark -condensate is computed. In the simplest case, we find that for x_f up to the critical x_csim 4 there is a 1st order transition on which chiral symmetry is broken and the energy density jumps. In the conformal window x_c<x_f<11/2, there is only a continuous crossover between two conformal phases. When approaching x_c from below, x_fto x_c, temperature scales approach zero as specified by Miransky scaling.

Download