No Arabic abstract
The CMS experiment uses missing E_T to both measure processes in the Standard Model and test models of physics beyond the Standard Model. These proceedings show the performance of the missing E_T reconstruction evaluated by using 4.6 fb-1 of proton-proton collision data at the center-of-mass energy 7 TeV collected in 2011 with the CMS detector at the Large Hadron Collider. Missing E_T was reconstructed based on a particle-flow technique. Jet energy corrections were propagated to missing E_T. After anomalous signals and events were addressed, the missing E_T spectrum was well reproduced by MC simulation. The multiple proton-proton interactions in a single bunch crossing, pile-up events, degraded the performance of the missing E_T reconstruction. Mitigations of this degradation have been developed.
New physics beyond the Standard Model could well preferentially show up at the LHC in final states with taus. The development of efficient and accurate reconstruction and identification of taus is therefore an important item in the CMS physics programme. The potentially superior performance of a particle-flow approach can help to achieve this goal with the CMS detector. Preliminary strategies are presented in this summary for the hadronic decays of the taus.
We present a study of jet production in association with W and Z bosons in proton-proton collisions at a centre-of-mass energy of 7 TeV using the full 2010 data set collected by CMS corresponding to an integrated luminosity of (35.9 +/- 1.4) inverse picobarn. We report the measurement of ratios s(V + >= n jets)/s(V) and s(V + >= n jets)/s(V + >= (n - 1) jets), where V represents either a W or a Z, s stands for the cross section and n stands for the number of jets.
This paper describes a new measurement of the flux ratio of positive and negative muons from cosmic-ray interactions in the atmosphere, using data collected by the CMS detector at ground level and in the underground experimental cavern. The excellent performance of the CMS detector allowed detection of muons in the momentum range from 3 GeV to 1 TeV. For muon momenta below 100 GeV the flux ratio is measured to be a constant $1.2766 pm 0.0032(stat) pm 0.0032(syst)$, the most precise measurement to date. At higher momenta an increase in the charge asymmetry is observed, in agreement with models of muon production in cosmic-ray showers and compatible with previous measurements by deep-underground experiments.
The High-Luminosity Large Hadron Collider is expected to deliver up to 3000 fb$^{-1}$ of proton-proton collisions at 14 TeV center-of-mass energy. We present prospects for selected heavy-ion, Standard Model and Higgs sector measurements with the CMS detector at the HL-LHC, and discuss potential sensitivity to several beyond-Standard Model new physics scenarios.
The powerful muon and tracker systems of the CMS detector together with dedicated reconstruction software allow precise and efficient measurement of muon tracks originating from proton-proton collisions. The standard muon reconstruction algorithms, however, are inadequate to deal with muons that do not originate from collisions. We present the design, implementation, and performance of a dedicated cosmic muon track reconstruction algorithm, which features pattern recognition optimized for muons that are not coming from the interaction point, i.e. cosmic muons and beam-halo muons. To evaluate the performance of the new algorithm, data taken during Cosmic Challenge phases I and II as well as beam-halo muons recorded during the first LHC beam operation were studied. In addition, a variety of more general topologies of cosmic muons and beam-halo muons were studied using simulated data to demonstrate some key features of the new algorithm.