Do you want to publish a course? Click here

3D Temperature Mapping of Solar Photospheric Fine Structure Using Ca II H Filtergrams

136   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. The wings of the Ca II H and K lines provide excellent photospheric temperature diagnostics. At the Swedish 1-meter Solar Telescope the blue wing of Ca II H is scanned with a narrowband interference filter mounted on a rotation stage. This provides up to 010 spatial resolution filtergrams at high cadence that are concurrent with other diagnostics at longer wavelengths. Aims. The aim is to develop observational techniques that provide the photospheric temperature stratification at the highest spatial resolution possible and use those to compare simulations and observations at different heights. Methods. We use filtergrams in the Ca II H blue wing obtained with a tiltable interference filter at the SST. Synthetic observations are produced from 3D HD and 3D MHD numerical simulations and degraded to match the observations. The temperature structure obtained from applying the method to the synthetic data is compared with the known structure in the simulated atmospheres and with observations of an active region. Cross-correlation techniques using restored non-simultaneous continuum images are used to reduce high-altitude, small-scale seeing signal introduced from the non-simultaneity of the frames when differentiating data. Results. Temperature extraction using high resolution filtergrams in the Ca II H blue wing works reasonably well when tested with simulated 3D atmospheres. The cross-correlation technique successfully compensates the problem of small-scale seeing differences and provides a measure of the spurious signal from this source in differentiated data. Synthesized data from the simulated atmospheres (including pores) match well the observations morphologically at different observed heights and in vertical temperature gradients.



rate research

Read More

A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca II H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca II H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with Sunrise/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas that differ in height depending on the field strength near their roots.
The Chromospheric Lyman Alpha Spectropolarimeter (CLASP) observed the Sun in H I Lyman-{alpha} during a suborbital rocket flight on September 3, 2015. The Interface Region Imaging Telescope (IRIS) coordinated with the CLASP observations and recorded nearly simultaneous and co-spatial observations in the Mg II h&k lines. The Mg II h and Ly-{alpha} lines are important transitions, energetically and diagnostically, in the chromosphere. The canonical solar atmosphere model predicts that these lines form in close proximity to each other and so we expect that the line profiles will exhibit similar variability. In this analysis, we present these coordinated observations and discuss how the two profiles compare over a region of quiet sun at viewing angles that approach the limb. In addition to the observations, we synthesize both line profiles using a 3D radiation-MHD simulation. In the observations, we find that the peak width and the peak intensities are well correlated between the lines. For the simulation, we do not find the same relationship. We have attempted to mitigate the instrumental differences between IRIS and CLASP and to reproduce the instrumental factors in the synthetic profiles. The model indicates that formation heights of the lines differ in a somewhat regular fashion related to magnetic geometry. This variation explains to some degree the lack of correlation, observed and synthesized, between Mg II and Ly-{alpha}. Our analysis will aid in the definition of future observatories that aim to link dynamics in the chromosphere and transition region.
We reassess the relationship between the photospheric magnetic field strength and the Ca II K intensity for a variety of surface features as a function of the position on the disc and the solar activity level. This relationship can be used to recover the unsigned photospheric magnetic field from images recorded in the core of Ca II K line. We have analysed 131 pairs of high-quality, full-disc, near-co-temporal observations from SDO/HMI and Rome/PSPT spanning half a solar cycle. To analytically describe the observationally-determined relation, we considered three different functions: a power law with an offset, a logarithmic function, and a power law function of the logarithm of the magnetic flux density. We used the obtained relations to reconstruct maps of the line-of-sight component of the unsigned magnetic field (unsigned magnetograms) from Ca II K observations, which were then compared to the original magnetograms. We find that both power-law functions represent the data well, while the logarithmic function is good only for quiet periods. We see no significant variation over the solar cycle or over the disc in the derived fit parameters, independently of the function used. We find that errors in the independent variable, usually not accounted for, introduce attenuation bias. To address this, we binned the data with respect to the magnetic field strength and Ca II K contrast separately and derived the relation for the bisector of the two binned curves. The reconstructed unsigned magnetograms show good agreement with the original ones. RMS differences are less than 90 G. The results were unaffected by the stray-light correction of the SDO/HMI and Rome/PSPT data. Our results imply that Ca~II~K observations, accurately processed and calibrated, can be used to reconstruct unsigned magnetograms by using the relations derived in our study.
We use seeing-free high spatial resolution Ca II H data obtained by the SUNRISE observatory to determine properties of slender fibrils in the lower solar chromosphere. In this work we use intensity images taken with the SUFI instrument in the Ca II H line during the second scientific flight of the SUNRISE observatory to identify and track elongated bright structures. After the identification, we analyze theses structures in order to extract their morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with an average width of around 180 km, a length between 500 km and 4000 km, an average lifetime of ~400 s, and an average curvature of 0.002 arcsec^-1. The maximum lifetime of the SCFs within our time series of 57 minutes is ~2000 s. We discuss similarities and differences of the SCFs with other small-scale, chromospheric structures such as spicules of type I and II, or Ca II K fibrils.
Context. Small-scale bright features in the photosphere of the Sun, such as faculae or G-band bright points, appear in connection with small-scale magnetic flux concentrations. Aims. Here we report on a new class of photospheric bright points that are free of magnetic fields. So far, these are visible in numerical simulations only. We explore conditions required for their observational detection. Methods. Numerical radiation (magneto-)hydrodynamic simulations of the near-surface layers of the Sun were carried out. The magnetic field-free simulations show tiny bright points, reminiscent of magnetic bright points, only smaller. A simple toy model for these non-magnetic bright points (nMBPs) was established that serves as a base for the development of an algorithm for their automatic detection. Basic physical properties of 357 detected nMBPs were extracted and statistically evaluated. We produced synthetic intensity maps that mimic observations with various solar telescopes to obtain hints on their detectability. Results. The nMBPs of the simulations show a mean bolometric intensity contrast with respect to their intergranular surroundings of approximately 20%, a size of 60-80 km, and the isosurface of optical depth unity is at their location depressed by 80-100 km. They are caused by swirling downdrafts that provide, by means of the centripetal force, the necessary pressure gradient for the formation of a funnel of reduced mass density that reaches from the subsurface layers into the photosphere. Similar, frequently occurring funnels that do not reach into the photosphere, do not produce bright points. Conclusions. Non-magnetic bright points are the observable manifestation of vertically extending vortices (vortex tubes) in the photosphere. The resolving power of 4-m-class telescopes, such as the DKIST, is needed for an unambiguous detection of them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا