Let $L/K$ be a finite Galois extension of complete discrete valued fields of characteristic $p$. Assume that the induced residue field extension $k_L/k_K$ is separable. For an integer $ngeq 0$, let $W_n(sO_L)$ denote the ring of Witt vectors of length $n$ with coefficients in $sO_L$. We show that the proabelian group ${H^1(G,W_n(sO_L))}_{nin N}$ is zero. This is an equicharacteristic analogue of Hesselholts conjecture.
Let $A$ be any associative ring , possibly non-commutative, and let $p$ be a prime number. Let $E(A)$ be the ring of $p$-typical Witt vectors as constructed by Cuntz and Deninger and $W(A)$ be that constructed by Hesselholt. The goal of this paper is to answer the following question by Hesselholt: Is $HH_0(E(A)) $ isomorphic to $W(A)$? We show that in the case $p=2$, there is no such isomorphism possible if one insists it to be compatible with the Verscheibung operator and the Teichmuller map.
We give a $K$-theoretic account of the basic properties of Witt vectors. Along the way we re-prove basic properties of the little-known Witt vector norm, give a characterization of Witt vectors in terms of algebraic $K$-theory, and a presentation of the Witt vectors that is useful for computation.
Let an n-algebra mean an algebra over the chain complex of the little n-cubes operad. We give a proof of Kontsevichs conjecture, which states that for a suitable notion of Hochschild cohomology in the category of n-algebras, the Hochschild cohomology complex of an n-algebra is an (n+1)-algebra. This generalizes a conjecture by Deligne for n=1, now proven by several authors.
After recalling the various tautological algebras of the moduli space of curves and some of its partial compactifications and stating several well-known results and conjectures concerning these algebras, we prove that the natural extension to the case of pointed curves of a 1996 conjecture of Hain and Looijenga is true if and only if two of the stated conjectures are true.