No Arabic abstract
The merger of two carbon-oxygen white dwarfs can lead either to a spectacular transient, stable nuclear burning or a massive, rapidly rotating white dwarf. Simulations of mergers have shown that the outcome strongly depends on whether the white dwarfs are similar or dissimilar in mass. In the similar-mass case, both white dwarfs merge fully and the remnant is hot throughout, while in the dissimilar case, the more massive, denser white dwarf remains cold and essentially intact, with the disrupted lower mass one wrapped around it in a hot envelope and disk. In order to determine what constitutes similar in mass and more generally how the properties of the merger remnant depend on the input masses, we simulated unsynchronized carbon-oxygen white dwarf mergers for a large range of masses using smoothed-particle hydrodynamics. We find that the structure of the merger remnant varies smoothly as a function of the ratio of the central densities of the two white dwarfs. A density ratio of 0.6 approximately separates similar and dissimilar mass mergers. Confirming previous work, we find that the temperatures of most merger remnants are not high enough to immediately ignite carbon fusion. During subsequent viscous evolution, however, the interior will likely be compressed and heated as the disk accretes and the remnant spins down. We find from simple estimates that this evolution can lead to ignition for many remnants. For similar-mass mergers, this would likely occur under sufficiently degenerate conditions that a thermonuclear runaway would ensue.
Recent studies have shown that for suitable initial conditions both super- and sub-Chandrasekhar mass carbon-oxygen white dwarf mergers produce explosions similar to observed SNe Ia. The question remains, however, how much fine tuning is necessary to produce these conditions. We performed a large set of SPH merger simulations, sweeping the possible parameter space. We find trends for merger remnant properties, and discuss how our results affect the viability of our recently proposed sub-Chandrasekhar merger channel for SNe Ia.
White dwarf (WD) binary mergers are possible progenitors to a number of unusual stars and transient phenomena, including type Ia supernovae. To date, simulations of mergers have not included magnetic fields, even though they are believed to play a significant role in the evolution of the merger remnant. We simulated a 0.625 - 0.65 $M_{odot}$ carbon-oxygen WD binary merger in the magnetohydrodynamic moving mesh code Arepo. Each WD was given an initial dipole field with a surface value of $sim10^3$ G. As in simulations of merging double neutron star binaries, we find exponential field growth within Kelvin-Helmholtz instability-generated vortices during the coalescence of the two stars. The final field has complex geometry, and a strength $>10^{10}$ G at the center of the merger remnant. Its energy is $sim2times10^{47}$ ergs, $sim0.2$% of the remnants total energy. The strong field likely influences further evolution of the merger remnant by providing a mechanism for angular momentum transfer and additional heating, potentially helping to ignite carbon fusion.
The carbon-oxygen white dwarf (CO WD) + He star channel is one of the promising ways for producing type Ia supernovae (SNe Ia) with short delay times. Recent studies found that carbon under the He-shell can be ignited if the mass-accretion rate of CO WD is higher than a critical rate (about 2 * 10^-6 Msun/yr), triggering an inwardly propagating carbon flame. Previous studies usually supposed that the off-centre carbon flame would reach the centre, resulting in the formation of an oxygen-neon (ONe) WD that will collapse into a neutron star. However, the process of off-centre carbon burning is not well studied. This may result in some uncertainties on the final fates of CO WDs. By employing MESA, we simulated the long-term evolution of off-centre carbon burning in He-accreting CO WDs. We found that the inwardly propagating carbon flame transforms the CO WDs into OSi cores directly but not ONe cores owing to the high temperature of the burning front. We suggest that the final fates of the CO WDs may be OSi WDs under the conditions of off-centre carbon burning, or explode as iron-core-collapse SNe if the mass-accretion continues. We also found that the mass-fractions of silicon in the OSi cores are sensitive to the mass-accretion rates.
We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a co-rotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multi-grid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here the detonation occurs in the primarys core and relies on the combined action of tidal heating, accretion heating, and self-heating due to nuclear burning. The exploding structure is compositionally stratified, with a reverse shock formed at the surface of the dense ejecta. The existence of such a shock has not been reported elsewhere. The explosion energy ($1.6times 10^{51}$ erg) and $^{56}$Ni mass (0.86 M$_odot$) are consistent with a SN Ia at the bright end of the luminosity distribution, with an approximated decline rate of $Delta m_{15}(B)approx 0.99$. Our study does not support double-detonation scenarios in the case of a system with a 0.6 M$_odot$ helium secondary and a 0.9 M$_odot$ primary. Although the accreted helium detonates, it fails to ignite carbon at the base of the boundary layer or in the primarys core.
The double-degenerate model, involving the merger of double carbon-oxygen white dwarfs (CO WDs), is one of the two classic models for the progenitors of type Ia supernovae (SNe Ia). Previous studies suggested that off-centre carbon burning would occur if the mass-accretion rate (Macc) is relatively high during the merging process, leading to the formation of oxygen-neon (ONe) cores that may collapse into neutron stars. However, the off-centre carbon burning is still incompletely understood, especially when the inwardly propagating burning wave reaches the centre. In this paper, we aim to investigate the propagating characteristics of burning waves and the subsequently evolutionary outcomes of these CO cores. We simulated the long-term evolution of CO WDs that accrete CO-rich material by employing the stellar evolution code MESA on the basis of the thick-disc assumption. We found that the final outcomes of CO WDs strongly depend on Macc (Msun/yr) based on the thick-disc assumption, which can be divided into four regions: (1) explosive carbon ignition in the centre, then SNe Ia (Macc < 2.45*10^-6); (2) OSi cores, then neutron stars (2.45*10^-6 < Macc < 4.5*10^-6); (3) ONe cores, then e-capture SNe (4.5*10^-6 < Macc < 1.05*10^-5); (4) off-centre oxygen and neon ignition, then off-centre explosion or Si-Fe cores (Macc > 1.05*10^-5). Our results indicate that the final fates of double CO WD mergers are strongly dependent on the merging processes (e.g. slow merger, fast merger, composite merger, violent merger, etc.).